JSW Steel Limited

JSWSL/ENVT/MoEF&CC/HYR/2023-24/56 28th June 2023

The Director

Regional office Ministry of Environment Forest and Climate Change 1st Floor, Additional office block for GPOA. Shastri Bhawan, Haddows Road, Nungambakkam, Chennai -600006

Dear Sir.

JSW Steel Ltd., Salem Works - EC- Six Monthly Compliance Status Report submission for the

period October 2022 - March 2023 - Reg.

Ref: Environmental Clearances F. No. J-11011/281/2006-IA. II(I) dated 07.07.2017, EC amendment

dated 07.08.2019 and EC dated 10.02.2020

With reference to the above subject, herewith we are enclosing a six monthly condition compliance status report of the Environmental Clearances issued by your good office on 07.07.2017, 07.08.2019 &10.02.2020 for the period October 2022 - March 2023.

We kindly request you to acknowledge the receipt of this letter for our record purpose.

Thanking you,

Yours faithfully,

For JSW Steel Limited., Salem Works

B. N. S. Prakash Rao

Executive Vice President - Plant Head

Encl: Conditions compliance status report for the period October to March 2023

Cc:

Regional Directorate, Central Pollution Control Board, 77-A, Padi, Ambattur Industrial Estate Road, Mogappair, Chennai, Tamil Nadu -58

The Member Secretary, Tamil Nadu Pollution Control Board, 100, Anna Salai, Guindy, Chennai - 600 032.

The Joint Chief Environmental Engineer (M), Tamil Nadu Pollution Control Board, Salem Region, No # 9, 4th Cross Street, Brindhavan road, Fairlands, Salem -16.

Salem Works

www.jsw.in

P.O. Pottaneri, Mecheri, Mettur - Tk, Salem - Dt. Pin : 636 453 Bandra Kurla Complex Tamilnadu, India. CIN No L27102MH1994PLC152925 T+91 4298 272000

Registered Office

JSW Centre Bandra East, Mumbai 400 051 T +91 22 4286 1000 F +91 22 4286 3000

O P Jindal Group

SIX MONTHLY CONDITION COMPLIANCE REPORT OF ENVIRONMENT CLEARANCE (EC) FOR 1.15 MTPA INTEGRATED STEEL PLANT

Reporting Period: October 2022 to March 2023

JSW Steel Limited., Salem Works, Pottaneri (P.O), Mecheri, Mettur(Tk), Salem(Dt) Tamil Nadu, India, 636453

Submitted to

REGIONAL OFFICE, MoEF&CC

Shastri Bhawan, Haddows road, Nungambakkam, Chennai -600006

REGIONAL DIRECTORATE, CPCB,

Ambattur Industrial Estate Road, Mogappair, Chennai, Tamil Nadu -58

JCEE (M), TNPCB, SALEM REGION,

Fairlands, Salem -16.

TABLE OF CONTENTS

SI. No.	Description
1	Present plant status report with respect to EC dated 07.07.2017 & 10.02.2020
2	Compliance status report to the EC dated.10.02.2020
3	Compliance status report to the EC Amendment dated.07.08.2019
4	Compliance status report to the EC Amendment dated.07.08.2019
5	Annexure – 1: Production details
6	Annexure – 2 : Waste generation details
7	Annexure – 3: Stack emission monitoring report of TNPCB & NABL accredited laboratory
8	Annexure – 4: Online stack emission monitoring & Ambient air quality monitoring report
9	Annexure – 5: Online effluent monitoring report and effluent & ground water quality manual monitoring report of TNPCB & NABL accredited laboratory
10	Annexure – 6: Treated sewage quality monitoring report of TNPCB & NABL accredited laboratory
11	Annexure – 7: Ambient Noise level monitoring report of NABL accredited laboratory
12	Annexure – 8: Compliance status report to the CREP conditions
13	Annexure – 9: Copy of advertisement in local newspaper for EC dated. 10.02.2020
14	Annexure – 10: Copy of acknowledgement of EC copy submission to Heads of local bodies & Panchayats
15	Annexure –11: Report of ESC fund allocation & spent for the period April 2022 to March 2023
16	Annexure – 12: Details of APC measures provided in Steel & CPPII
17	Annexure – 13: Details of greenbelt development
18	Annexure – 14: Report of CER activities
19	Annexure – 15: Carbon sequestration report
20	Annexure – 16: Copy of the Environmental Clearance dated.10.02.2020
21	Annexure – 17: Copy of the Environmental Clearance dated.07.07.2017
22	Annexure – 18:NIPL approval obtained for Steel Ball under product mix

JSW STEEL LTD., SALEM WORKS COMPLIANCE STATUS REPORT TO ENVIRONMENTAL CLEARANCE (EC) Compliance status report to the EC dated.10.02.2020 as on 31.03.2023

Status of the approved projects and present status of the EC dated 10.02.2020 Expansion details are given below:

		Project	CTO-EXP-	CTO-EXP-
S. No	Facilities	status	II	III
	COP #1 stack replacement by 2 number of stacks	Completed		٧
1	COF #1 Stack replacement by 2 number of stacks	Completed		V
	COP #2 stack replacement by 2 number of stacks	Yet to start		
2	Sinter plant sinter cooler waste heat diversion to GGBFS	Completed		٧
3	Emission reduction project in SP#2-WGF	Under		
	Emission reduction project in St #2 Wei	progress		
4	GGBFS	Completed		٧
5	LRF#1 stack modification	Completed		٧
6	Additional one LRF with VD system (BF gas fired boilers 2 Nos)	Yet to start		
7	Fume exhaust system in CCM#1 & 3	Yet to start		
8	ABGM in CCM#1 & 2	Completed		٧
9	Pickling & Annealing Steel	Completed	٧	
10	Emission reduction project in CPP#2 coal based boiler	Partially	٧	
	·	completed		
11	DG set - 8 No's (6 Nos for Steel and 2 Nos for CPII)	Completed		√ (6 Nos)
12	Paver block making facility	Completed		٧
13	Acid fumes extraction system in Etching lab	Completed		٧
14	Slag crushing unit (EC approval obtained and CTE not obtained.	Completed		٧
	Justification given to board)			
15	Batching plant (EC approval obtained and CTE not obtained.	Completed		٧
	Justification given to board)	completed		
16	Coke cutter dedusting system in COP	Completed		٧
17	COP #3 stack modification	Completed		٧
18	WHRB#3 stack modification	Completed		٧
19	Steam exhaust system#2 in CCM#3	Completed		٧
20	Thermic fluid heater for ATFD in pickling plant ETP	Yet to start		

Compliance to EC Conditions of 0.8 MTPA Slag grinding unit, new facilities related to value addition and technological upgradation within the existing integrated steel plant premises.

The manufacturing facilities details as per EC dated 10.02.2020 is given in the below table

S. No	Manufacturing Units Coke Oven Plant -1(Non-	Existing Capacity (MTPA)	Proposed Expansion (MTPA)	Total Capacity after Expansion (MTPA)	Project execution phase and current status
1	Recovery Type)	0.50	-	0.5	Nil
2	Sinter Plant–1 (20 Square Meter)	0.175	-	0	Nil
3	Sinter Plant–2 (90 Square Meter)	1.06	-	1.06	Nil
4	Sinter Plant–3(90 Square Meter)	-	1.06	1.06	Yet to start (phase#2)
5	Blast Furnace – 1 (402 to 650 Cubic Meter)	0.367	0.316	0.683	Yet to start
6	Blast Furnace–2 (550 to 650 Cubic Meter)	0.578	0.105	0.683	Completed in phase#1 and under operation
7	Energy Optimizing Furnace-1(65T)	0.41	0.23	0.64	Completed in phase#1 and under operation
8	Energy Optimizing Furnace – 2 (65T)	0.62	-	0.62	Nil
9	Ladle Furnace-1with Common VD (45T to 65T)	45T/heat	20T/heat	65T/heat	Completed in phase#1 and under operation
10	Ladle Furnace-2(65T)	65T/heat	-	65T/heat	Nil
11	LadleFurnace-3 common VD (65T)	65T/heat	-	65T/heat	Nil
12	LadleFurnace-4(65T)	65T/heat	-	65T/heat	Nil
13	ContinuousCastingMachine-1	0.35	-	0.35	Nil
14	ContinuousCastingMachine-2	0.50	-	0.50	Nil
15	ContinuousCastingMachine-3	-	0.45	0.45	Completed in phase#1 and under operation
16	Bar & Rod Mill Augmentation	0.4	0.08	0.48	Completed in phase#1 and under operation
17	Blooming Mill Augmentation	0.36	0.12	0.48	Completed in phase#1 and under operation
18	Pickling and Annealing Steel unit	-	0.06	0.06	Completed in phase#1 and under operation
19	Peeled and ground	-	0.04	0.04	Phase #2 (0.01 MTPA completed in phase #1)
20	Air Separation Plant 1	150 T/day	-	150 T/day	Nil
21	Air Separation Plant 2	390 T/day	-	390 T/day	Nil
22	Air Separation Plant 3	-	250 T/day	250 T/day	Yet to start Phase #2
23	Captive Power Plant-1	7 MW	-	7 MW	Power generation has been stopped from 01.10.2021 and the product has withdrawn from the consent
24	Captive Power Plant-2	2 x 30 MW		2 x30 MW	In operations

25	CaptivePowerPlant-3 (Unit 3 of CPP#2)	-	1 x 30 MW	1 x 30 MW	Completed in phase#1 and under operation
----	---------------------------------------	---	-----------	--------------	--

The production details for the period October 2022 to March 2023 is given in Annexure—1.

SI. No	Condition	Compliance
Α.	Specific Condition	1
i.	Particulate emission from the rod mill of slag grinding unit shall be less than 10 mg/Nm ³ .	The plant is under in operations and dedicated air pollution control measures are installed and the. latest TNPCB survey conducted from 19.01.2023 to 25.01.2023 and the results are well within the standard of 10 mg/Nm3.
ii.	Green belt shall be developed in an area of 85 ha (210 acres) in and around the plant in a time frame of two years.	The existing greenbelt developed is around 262421 Nos with area cover of about 91.28 Ha of the total area which is about 34.05 %.
В.	General Conditions	
I.	Statutory Compliance	
i.	The project proponent shall obtain Consent to Establish / Operate under the provisions of Air (Prevention & Control of Pollution) Act, 1981 and the Water (Prevention & Control of Pollution) Act, 1974 from the concerned State Pollution Control Board / Committee.	Being Complied.
ii.	The project proponent shall obtain the necessary permission from the Central Ground Water Authority, in case of drawl of ground water / from the competent authority concerned in case of drawl of surface water required for the project.	Being complied
iii.	The project proponent shall obtain authorization under the Hazardous and other Waste Management Rules, 2016 as amended from time to time.	Being complied, the existing authorization is valid till 31.03.2026 and if any amendments shall be complied
II.	Air Quality monitoring and preservation	
i.	The project proponent shall install 24x7 continuous emission monitoring system at process stacks to monitor stack emission with respect to standards II. Air Quality Monitoring and Preservation prescribed in Environment (Protection) Rules 1986 vide G.S.R. 277(E) dated 31st March 2012 (Integrated iron & Steel); G.S.R. 414 (E) dated 30th May 2008 (Sponge Iron) as amended from time to time; S.O. 3305 (E) dated 7th December 2015 (Thermal Power Plant) as amended from time to time and connected to SPCB and CPCB online servers and calibrate these system from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.	Being Complied, there are 39 no. of dust analyzers & 23 no. gas analyzers are installed as per CTO condition and the real time data of SPM, SO2, NOx and CO are transmitted to the Care Air Centre of TNPCB and CPCB servers. Apart from the this, TNPCB is conducting bi-annual survey and manual monitoring is being conducted by NABL accredited external laboratory on monthly basis. The latest TNPCB survey conducted from 19.01.2023 to 25.01.2023) and the results are well within the standards issued by the authority.
ii.	The project proponent shall monitor fugitive emissions in the plant premised at least once in every quarter through labs recognized under Environment (Protection) Act, 1986.	Being Complied, Fugitive emissions in the plant are being monitored on monthly basis and as and when required basis by a NABL accredited external laboratory and the monitoring reports are being submitted to TNPCB on monthly basis. Also, Biannual

SI. No	Condition	Compliance
		survey is being conducted by AEL, TNPCB for fugitive emissions and the results are also well within the standards.
iii.	The project proponent shall install system to carryout Continuous Ambient Air Quality monitoring for common/criterion parameters relevant to the main pollutants released (e.g. PM_{10} and $PM_{2.5}$ in reference to PM emission, and SO_2 and NO_x in reference to SO_2 and NO_x emissions) within and outside the plant area at least at four locations (one within and three outside the plant area at an angle of 120° each), covering upwind and downwind directions.	Being complied, Continuous Ambient Air Quality monitoring stations of four numbers are installed in the plant periphery covering upwind & downwind directions. One station is installed to monitor PM ₁₀ , PM _{2.5} , SO ₂ , NO _x and CO and other 3 stations are installed to monitor PM ₁₀ , PM _{2.5} , SO ₂ as per the CTO condition. The real time parameters are connected to Care Air Centre of TNPCB.
iv.	The cameras shall be installed at suitable locations for 24x7 recording of battery emissions on the both sides of coke oven batteries and videos shall be preserved for at least one-month recordings.	Complied, there are three coke oven batteries which are installed adjacent to each other. An IP camera has been installed in the top of the COP area to monitor battery emissions on the both sides with recording option and the minimum preservation time is one month.
V.	Sampling facility at process stacks and at quenching towers shall be provided as per CPCB guidelines for manual monitoring of emissions.	Being complied, Sampling facilities at process stacks and quenching towers are provided for manual monitoring of emissions. However, there is no dust is being vented through the quenching stacks.
vi.	The project proponent shall submit monthly summary report of continuous stack emission and air quality monitoring and results of manual stack monitoring and manual monitoring of air quality/fugitive emissions to Regional Office of MoEF&CC, Zonal Office of CPCB and Regional Office of SPCB along with six-monthly monitoring report.	Being Complied Monthly summary report of continuous stack emission and ambient air quality monitoring and results of manual stack monitoring and manual monitoring of air quality/fugitive emissions are being submitted along with six monthly compliance reports to Regional Office of MoEF&CC, Zonal Office of CPCB and Regional Office of SPCB. Please refer <i>Annexure 3 & 4</i>
vii.	Appropriate Air Pollution Control (APC) system shall be provided for all the dust generating points including fugitive dust from all vulnerable sources, so as to comply prescribed stack emission and fugitive emission standards.	Complied, adequate Air Pollution Control measures are installed in the respective process and raw material handling areas. Water sprinklers, dry & wet fog systems, GI sheets (as dust barrier) are provided in raw material handling areas to control fugitive emission.
viii.	The project proponent shall provide leakage detection and mechanized bag cleaning facilities for better maintenance of bags.	Complied, appropriate leakage detection systems and mechanized bag cleaning facilities are provided in respective bag filter systems.
ix.	Secondary emission control system shall be provided at SMS converters.	Complied, dedicated secondary de-dusting systems are provided at EOF & LRF processes to control the secondary fugitive emission.
х.	Pollution control system in the steel plant shall be provided as per the CREP guidelines of CPCB.	Complied, as per the CREP guidelines of CPCB, Pollution control systems are provided. Please refer <i>Annexure 8</i>
xi.	Sufficient number of mobile or stationery vacuum cleaners shall be provided to clean plant roads, shop floors, and roofs regularly.	Complied, 3 numbers of road sweeping machines are dedicatedly deployed for road cleaning applications and Mobile vacuum cleaners are also provided to clean shop floors, roofs regularly.

SI. No	Condition	Compliance
Xii.	Recycle and reuse iron ore fines, coal and coke fines, lime fines and such other fines collected in the pollution control devices and vacuum cleaning devices in the process after briquetting/agglomeration.	Being complied, Iron ore fines, coal and coke fines, lime fines, and such other fines collected in the pollution control devices are being reused in the sinter plant for agglomeration processes which is basically a wealth from the waste to minimize the resource depletion.
xiii.	The project proponent use leak proof trucks/dumpers carrying coal and other raw materials and cover them with tarpaulin.	Being complied, Trucks/dumpers carrying coal and other raw materials are covered with tarpaulin. Leak proof trucks are used for fly ash transportation and other materials.
xiv.	Facilities for spillage collection shall be provided for coal and coke on wharf of coke oven batteries (Chain conveyors, land based industrial vacuum cleaning facility).	Being complied, Coking coal is transferred through closed conveyor system to stamping station. The stamped coal (wet condition) is charged into coke oven batteries through a dedicated coal charging system. Hence spillage of coal is not anticipated.
xv.	Land-based APC system shall be installed to control coke pushing emissions.	Our coke oven plant is non-recovery type and installed in the year 2007. These are heat recovery coke ovens which are operating in high negative pressure and no visible emission is anticipated/notice. Hence, it is not anticipated to install Land-based APC system into the existing non-recovery type coke ovens. The same has been communicated to MoEF&CC dated 26.09.2020 and 24.05.2022 to exempt the condition. However, a dedicated dedusting system is installed in the one number of coke pushing car and in operations from FY22. The horizontal deployment will be done in one more pusher car.
xvi.	Monitor CO, HC and O_2 in flue gases of the coke oven battery to detect combustion efficiency and cross leakages in the combustion chamber.	Our coke oven plant is non-recovery type. The heat for carbonisation is provided by the radiation heat by burning of evolved gases from the bottom and top of the coal mass. The requirement of monitoring of HC, CO and O2 were intended for recovery type of coke ovens. However, the monitoring of parameters CO and O2 are installed at Waste Heat recover boilers which are directly connected with flue gas of coke ovens. The same has been communicated to MoEF&CC dated 26.09.2020 and 24.05.2022 to exempt the condition
xvii	Vapor absorption system shall be provided in place of vapor compression system for cooling of coke oven gas in case of recovery type coke ovens.	Not Applicable as our Coke oven is non-recovery type.
xvii i.	In case concentrated ammonia liquor is incinerated, adopt high temperature incineration to destroy	Not Applicable as Our Coke oven is non-recovery type.

SI. No	Condition	Compliance
	Dioxins and Furans, Suitable NOx control facility shall be provided to meet the prescribed standards.	
xix.	The coke oven gas shall be subjected to desulphurization if the Sulphur content in the coal exceeds 1%.	The coal usage in coke oven contains Sulphur content less than 1%.
xx.	Wind shelter fence and chemical spraying shall be provided on the raw material stock piles.	Complied, GI sheets cover (as dust barrier), wind nets, water sprinkler systems and dry/wet fog systems are provided on the raw material stock piles and there is no fugitive emission observed with the process.
xxi.	Design the ventilation system for adequate air changes as per ACGIH document for all tunnels, motor houses, Oil cellars.	Being complied, the ventilation system for adequate air changes for all tunnels, motor houses, Oil cellars are being complied as per the CEIG rules.
xxii	The project proponent shall install Dry Gas Cleaning Plant with bag filter for Blast Furnace and SMS converter.	With reference to the EC dated 10.02.2020 there is no plan to install new Blast Furnace and Steel Making process and also the existing steel plant consist of small capacity Blast Furnaces (BF#1 402 m³ with 0.367 MTPA & BF#2 650 m³ with 0.683 MTPA capacity) in Iron Zone and EOFs (EOF#1 with the capacity of 0.64 & EOF#2 with the capacity of 0.62 MTPA) in SMS zone. The BF#1 & EOF#1 were installed in the year 1998 with wet type gas cleaning system and BF#2 & EOF#2 were installed in 2007. BF#2 installed with Dry type gas cleaning system during establishment stage itself and EOF#2 installed with wet type gas cleaning system. The same has been communicated to MoEF&CC dated 26.09.2020 and 24.05.2022 to exempt the condition
xxiii	Dry quenching (CDQ) system shall be installed along with power generation facility from waste heat recovery from hot coke.	NA, the existing coke oven (Non-recovery type) has installed with wet quenching in line with the EC approved in 2007. There is no modification proposed in the existing coke ovens in the recently approved EC dated 10.02.2020. However, the installation of CDQ matter has been taken up with the OEM and it is reported that installation of CDQ within the existing capacity of 0.5 MTPA Coke Oven is not technically feasible and viable.
III.	Water Quality Monitoring and Preservation	
i.	The project proponent shall install 24x7 continuous effluent monitoring system with respect to standards prescribed in Environment (Protection) Rules 1986 vide G.S.R. 277(E) dated 31st March 2012 (Integrated iron & Steel); G.S.R. 414 (E) dated 30th May 2008 (Sponge Iron) as amended from time to time; S.O. 3305 (E) dated 7th December 2015 (Thermal Power Plant) as amended from time	Complied, flow meters for continuous monitoring system of effluent flow are provided at the Guard pond inlet & outlet and the real time values are connected to TNPCB & CPCB server. A dedicated EMFM is installed in the ETP discharge point along with IP camera (with PTZ option). Analysers are installed with respect to the standards related to Iron & Steel and Thermal Power

SI.	Condition	Compliance
No	to time and connected to SPCB and CPCB online servers and calibrate these system from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories. The project proponent shall monitor regularly ground water quality at least twice a year (pre and post monsoon) at sufficient numbers of piezometers/sampling wells in the plant and adjacent areas through labs recognized under Environment (Protection) Act, 1986 and NABL accredited laboratories.	Plant and the real time parameters are connected to TNPCB/CPCB servers from Aug'2020. EMFM and sensors are being calibrated from time to time according to equipment supplier specification. Apart from this, treated wastewater quality is also monitored by NABL accredited laboratory & TNPCB on monthly basis and reports are periodically submitted to TNPCB. Ground water quality around the periphery of the plant is being monitored by TNPCB and NABL accredited laboratory on monthly/quarterly basis. Piezo metric sampling bore well is provided inside the plant premises and the water quality is being monitored on monthly basis by NABL laboratory.
ii.	The project proponent shall submit monthly summary report of continuous effluent monitoring and results of manual effluent testing and manual monitoring of ground water quality to Regional Office of MoEF&CC, Zonal Office of CPCB and Regional Office of SPCB along with six-monthly monitoring report.	Complied, monthly summary reports of continuous effluent monitoring, results of manual effluent testing and manual monitoring of ground water quality by TNPCB & NABL accredited laboratory are being submitted to the Regional Office of MoEF&CC, Zonal Office of CPCB and Regional Office of SPCB along with the six-monthly monitoring report. Please refer <i>Annexure 5</i>
iii.	The project proponent shall provide the ETP for coke oven and by-product to meet the standards prescribed in G.S.R. 277(E) dated 31st March 2012 (Integrated iron & Steel); G.S.R. 414 (E) dated 30th May 2008 (Sponge Iron) as amended from time to time; S.O. 3305 (E) dated 7th December 2015 (Thermal Power Plant) as amended from time to time.	Being Complied, Our Coke Oven plant is non-recovery type. Sponge iron plant not installed in our plant. In the additional 1 x 30 MW CPP (TPP) Air Cooled Condenser has been installed in place of water cooled condenser and the entire quantity (705 KLD) of trade effluent is transferred to steel plant guard pond for treatment and reuse in steel plant.
iv.	Adhere to 'Zero Liquid Discharge'	Being Complied, wastewater generated from the various process of steel plant and CPP II (3 x 30 MW) is collected in a guard pond at steel plant and after the pretreatment treated water is 100 % reused in steel plant process to the application of Slag Granulation plant of BF, gas cleaning plant of BF & EOF, slag quenching, coke quenching, dust suppression systems and green belt as consented. To treat the effluent arising out of the pickling plant & etching lab a dedicated ETP is installed with the facility of Pretreatment, Ultra filter, Multistage RO plant, MEE and ATFD. The treated water is reused in pickling process and etching lab.

SI. No	Condition	Compliance
v.	Sewage Treatment Plant shall be provided for treatment of domestic wastewater to meet the prescribed standards.	Being complied, Sewage Treatment Plants are provided for treatment of domestic wastewater and treated water is meeting the prescribed standards. Treated water sample is being collected by TNPCB & NABL accredited laboratory on monthly basis and the results are well within the prescribed standards. Please refer <i>Annexure 6</i>
vi.	Garland drains and collection pits shall be provided for each stock pile to arrest the run-off in the event of heavy rains and to check the water pollution due to surface run off.	Complied, Various collection pits are provided to arrest the run-off and ensure there is no water pollution due to surface run off.
vii.	Tyre washing facilities shall be provided at the entrance of the plant gates.	Being complied, tyre washing unit is provided at the entrance of the plant gate to control the fugitive emission from vehicular movement.
viii.	${\sf CO_2}$ injection shall be provided in GCP of SMS to reduce pH in circulating water to ensure optimal recycling of treated water for converter gas cleaning.	pH of existing circulating water of GCP is the range of 9.0 to 10. Due to the minimum alkalinity, addition of CO_2 injection is not anticipated to the recycling water. However, actions will be initiated to the trial application.
ix.	The project proponent shall practice rainwater harvesting to maximum possible extent.	Being Complied, Rain water harvesting ponds are provided near to township (East side) with the capacity of 17500 KL, West side of Township STP with the capacity of 33000 KL, Near RO plant area 15000 KL and plant guest house backside 4000 KL. The overall collection capacity is 69500 KL. The collected rain water is recharged to mother earth, reused in steel plant wherever applicable for secondary applications. Capacity of the rain water harvesting ponds will be enhanced based on the needs and requirement.
x.	Treated water from ETP of COBP shall not be used for coke quenching.	Not Applicable, Our Coke oven plant is non-recovery type.
xi.	Water meters shall be provided at the inlet to all unit processes in the steel plants.	Being complied, Water meters are provided at the inlet to all unit processes in our steel plant.
xii.	The project proponent shall make efforts to minimize water consumption in the steel plant complex by segregation of used water, practicing cascade use and by recycling treated water.	Being complied, Segregation of used water according to the quality characteristics treated and utilized accordingly. Efforts are taken to minimize water consumption by installation of RO plant, maximize cooling water COCs and adopting the Best Available Technologies (BAT) like installation of Air Cooled Condenser Instead Water Cooled Condenser, etc.,
IV.	Noise Monitoring and prevention	
i.	Noise level survey shall be carried as per the prescribed guidelines and report in this regard shall be submitted to Regional Officer of the Ministry as a part of six-monthly compliance report.	Being complied, Noise level is being monitored on regular basis by a NABL accredited laboratory &TNPCB and the results are well within the standards and reports are being submitted to the Regional Officer of

SI. No	Condition	Compliance
		the Ministry as a part of six-monthly compliance report. Please refer <i>Annexure 7</i>
ii.	The ambient noise levels should conform to the standards prescribed under E(P)A Rules, 1986 viz.75 dB(A) during day time and 70 dB(A) during night time.	Complied, the ambient noise levels are being monitored monthly basis and the results are well within the prescribed limit of limits 75 dB(A) during day time and 70 dB(A) during night time and reports are being submitted to the Regional Officer of the Ministry as a part of six-monthly compliance report. Please refer <i>Annexure 7</i>
٧.	Energy Conservation Measures	
i.	The project proponent shall provide TRTs to recover energy from top gases of Blast Furnaces.	Not Applicable. The capacity of the existing furnaces is very small and operating at low top pressure (< 1.3 bar). Hence, it is not technically feasible to install TRT in the existing blast furnaces. There is no modification in the existing BFs in the EC approved now. The same has been communicated to MoEF&CC dated 26.09.2020 and 24.05.2022 to exempt the condition. For this we will be approaching MoEF&CC for EC amendment
ii.	Coke Dry quenching (CDQ) shall be provided for coke quenching for both recovery and non-recovery type coke ovens.	The existing coke oven (Non-recovery type) has installed with wet quenching in line with the EC approved in 2007. There is no modification proposed in the existing coke ovens in the recently approved EC dated 10.02.2020. However, the installation of CDQ matter has been taken up with the OEM and it is reported that installation of CDQ within the existing capacity of 0.5 MTPA Coke Oven is not technically feasible and viable and the same has been communicated to MoEF&CC dated 26.09.2020 and 24.05.2022 to exempt the condition. The same has been communicated to MoEF&CC dated 26.09.2020 and 24.05.2022 to exempt the condition. For this we will be approaching MoEF&CC for EC amendment.
iii.	Waste heat shall be recovered from Sinter Plants coolers and Sinter Machines.	Being complied, Waste heat from Sinter plant cooler is diverted to the BF Slag grinding unit to recover sensible heat.
iv.	Use torpedo ladle for hot metal transfer as far as possible. If ladles not used, provide covers for open top ladles.	Not applicable, as usage of torpedo ladle is mostly applicable to larger capacity of BF. Our BF capacity is smaller, ladle covering is done by means of heat insulating compounds such as dry rice husk.
V.	Use hot charging of slabs and billets/blooms as far as possible.	Based on the product specification, hot charging is done for billets/blooms. Slabs are not produced in our facility.

SI. No	Condition	Compliance
vi.	Waste heat recovery systems shall be provided in all units where the flue gas or process gas exceeds 300°C.	Being complied, waste heat recovery boilers are in operation to recover maximum heat from flue gas and produce energy. Waste heat from Sinter plant cooler is diverted to the BF Slag grinding unit to recover sensible heat
vii.	Explore feasibility to install WHRS at Waste Gases from BF stoves; Sinter Machine; Sinter Cooler, and all reheating furnaces and if feasible shall be installed.	Being complied, Waste gas utilization from BF stoves not feasible and Sinter machine waste heat being utilized. Waste heat from Sinter plant cooler is diverted to the BF Slag grinding unit to recover sensible heat and BF gas is utilized in Mills operations, BF stoves as fuel and CPPs for power generation. Also, in view of waste heat and energy conservation measures power generation through the existing CPP#1 (7 MW) is stopped from 01.10.2021 and the 2 Nos of boilers are used for process steam supply with the capacity of 1 Number with 25 TPH and 1 Number with 8 TPH.
viii.	Restrict Gas flaring to < 1%	Being complied, BF waste gas is maximum used in all the shop floors as gaseous fuel where by usage of fossil fuel is optimized. To the effective utilization online monitoring system(SCADA) is installed to maximize the BF gas utilization.
ix.	Provide solar power generation on roof tops of buildings, for solar light system for all common areas, street lights, parking around project area and maintain the same regularly.	Being Complied, Solar panel is installed with the capacity of 60 KW (50 KW at Canteen and 10 KW at R&D building) and the average power generation is in the range of 12 Kwhr and further installations will be done in phased manner.
x.	Provide LED lights in their officers and residential areas.	Being Complied, LED based lightings are provided in the offices and township area and the replacement of sodium vapor lamp to LED is increased from 800 KW to 950 KW. Further planning will be done to install LED lights every year in a phased to manner.
xi.	Ensure installation of regenerative type burners on all reheating furnaces.	Being complied, BF gas is used as fuel and regenerative type burners are installed in reheating furnaces (Mills).
VI.	Waste Management	
i.	An attrition grinding unit to improve the bulk density of BF granulated slag from 1.0 to 1.5 kg/l shall be installed to use slag as river sand in construction industry.	Complied, BF slag grinding unit is under operations to produce ground granulated BF slag which is directly sold to cement industries and open market as a value addition byproduct.
ii.	In case of Non-Recovery coke ovens, the gas main carrying hot flue gases to the boiler shall be insulated to conserve heat and to maximize heat recovery.	Being complied, the gas main carrying hot flue gases to the boilers is completely insulated to conserve heat and to maximize heat recovery.
iii.	Tar Sludge and waste oil shall be blended with coal charged in coke ovens (applicable only to recovery coke ovens).	Not applicable, we have installed Non Recovery type coke oven and hence the general condition not applicable
iv.	Carbon recovery plant to recover the elemental carbon present in GCP slurries for use in Sinter plant shall be installed.	Complied, after clarification and thickener treatment GCP slurry is treated in sludge handling unit and the carbon recovered is reused in the sinter plant.

SI. No	Condition	Compliance
v.	Waste recycling Plant shall be installed to recover scrap, metallic and flux for recycling to sinter plant and SMS.	Being complied, scrap and metallic contents are recovered and recycled in the SMS where by certain level of GHG emission is offset.
vi.	Used refractories shall be recycled as far as possible.	Being complied, Refractories are selected to withstand high temperature whose self-life is longer and generations of used refractories is lesser. The same is recycled in downstream applications.
vii.	SMS slag after metal recovery in waste recycling facility shall be conditioned and used for road making, railway track ballast and other applications. The project proponent shall install a waste recycling facility to recover metallic and flux for recycle to sinter plant. The project proponent shall establish linkage for 100% reuse of rejects from Waste Recycling Plant.	Being Complied, SMS slag is sent for metal recovery system and the crushed slag with various sizes is reused in internal applications like sinter plant, EOF as hearth layer and cooling media respectively and to cement industries. Portion of crushed slag will be used in paver block facility as replacement to the natural aggregate. With this efforts are being taken to maximise 100% reuse of rejects.
viii.	100% utilization of fly ash shall be ensured. All the fly ash shall be provided to cement and brick manufacturers for further utilization and Memorandum of Understanding in this regard shall be submitted to the Ministry's Regional Office.	Being Complied, a coal based boiler is installed in 2006 and imported coal with low ash is used as fuel and the boiler is being operated with flexible load to cater the captive power requirement. Fly ash generated from the coal based boilers is 100% sent to local fly ash brick manufacturers
ix.	Oil collection pits shall be provided in oil cellars to collect and reuse/recycle spilled oil. Oil collection trays shall be provided under coils on saddles in cold rolled coil storage area.	Being complied, oil collection pits are provided in oil cellars to collect and reuse the spilled oil. Cold rolled products are not applicable to our plant.
x.	The waste oil, grease and other hazardous waste like acidic sludge from pickling, galvanizing, chrome plating mills etc. shall be disposed of as per the Hazardous & Other waste (Management & Transboundary Movement) Rules, 2016. Coal tar sludge / decanter shall be recycled to coke ovens.	Being Complied, the waste oil, grease and other hazardous waste like acidic sludge from pickling will be disposed as per the Hazardous & Other waste (Management & Transboundary Movement) Rules, 2016.
xi.	Kitchen waste shall be composted or converted to biogas for further use.	Being Complied, biogas plant is installed and kitchen w aste is being converted in to biogas and about 40 - 50 kg food waste per day is digested in bio gas plant and 5-6 kg LPG equivalent bio gas is produced per day.
VII.	Green Belt	
i.	Green belt shall be developed in an area equal to 33% of the plant area with native tree species in accordance with CPCB guidelines. The greenbelt shall inter alia cover the entire periphery of the plant.	Being complied, the existing greenbelt developed is around 262421 Nos with area cover of about 91.28 Ha of the total area which is about 34.05 %.
ii.	The project proponent shall prepare GHG emissions inventory for the plant and shall submit the programme for reduction of the same including carbon sequestration including plantation.	Being complied, GHG emissions inventory for the plant and carbon sequestration including plantation are prepared and being submitted every year. To the FY23 the carbon sequestration report is attached as <i>Annexure 15</i>

SI. No	Condition	Compliance
VIII	Public Hearing and Human Health issues	
i.	Emergency prepared plan based on the Hazard identification and Risk Assessment (HIRA) and Disaster Management Plan shall be implemented.	Being complied, emergency prepared plan based on the Hazard identification and Risk Assessment (HIRA) and Disaster Management Plan is being implemented and periodic review is also being conducted.
ii.	The project proponent shall carry out heat stress analysis for the workmen who work in high temperature work zone and provide Personal Protection Equipment (PPE) as per the norms of Factory Act.	Being Complied, OHC team periodically conduct Heat stress analyses for the workmen working in high temperature work zone and suitable Personal Protection Equipment (PPE)s and other adequate requirements are provided as per the norms of Factory Act.
iii.	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Being complied, provisions will be made for the expansion project activities and as per the condition temporary structure will be removed after the completion of expansion activities phase I.
iv.	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Annual Health Check-ups conducted as per the Factories Act for all employees on yearly basis and records are being maintained in the OHC
ix.	Corporate Environment Responsibility	
i.	The project proponent shall comply with the provisions contained in this Ministry's OM vide F. No. 22-65/2017-IA.III dated 1st May 2018, as applicable, regarding Corporate Environmental Responsibility.	Being complied, with respect to the Corporate Environmental Responsibility all the actions are being implemented and progress report is being submitted <i>(Annexure 14)</i> regularly along with the six monthly compliance reports. The changes with respect to the needs of surrounding villages are reviewed and accordingly the ESC revised action plan status was communicated through to the MoEF&CC vide their letter dated 26.09.2020
ii.	The company shall have a well laid down environmental policy duly approved by the Board of Directors. The environmental policy should prescribe for standard operating procedures to have proper checks and balances and to bring into focus any infringements/deviation/violation of the environmental/forest/wildlife norms/conditions. The company shall have defined system of reporting infringements/deviation/violation of the environmental / forest / wildlife norms / conditions and / or shareholders' / stake holders. The copy of the board resolution in this regard shall be submitted to the MoEF&CC as a part of six-monthly report.	Complied, Environmental policy duly approved by the Board of Directors is in place. Systems for reporting deviation/violation of environmental norms/conditions exists and are being followed.
iii.	A separate Environmental Cell both at the project and company head quarter level, with qualified personnel shall be set up under the control of senior	Complied, Environmental cell is in place with qualified personnel under the control of Senior Executive, who is reporting directly to the head of the organization.

SI. No	Condition	Compliance
	Executive, who will directly to the head of the organization.	
iv.	Action plan for implementing EMP and environmental conditions along with responsibility matrix of the company shall be prepared and shall be approved by competent authority. The year wise funds earmarked for environmental protection measures shall be kept in separate account and not to be diverted for any other purpose. Year wise progress of implementation of action plan shall be reported to the Ministry/Regional office along with the Six Monthly Compliance Report.	Being complied, EMP implementation with action plan and environmental conditions along with responsibility matrix is implemented and year wise funds (CAPEX) earmarked for environmental protection measures are kept as separate account and not be diverted for any other purpose.
V.	Self-environmental audit shall be conducted annually. Every three years third party environmental audit shall be carried out.	Being complied, Self-environmental audit is being conducted monthly/annually. Environment Audit is being carried out by external agencies once in year and confirming with the standard of ISO 14001:2015.
vi.	All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Iron and Steel plants shall be implemented.	Being complied, all the recommendations of the Charter on the Corporate Responsibility for the Environmental Protection (CREP) issued for the steel plant are implemented and the compliance status report <i>Annexure 8</i> is being submitted along with six monthly compliance reports.
X.	Miscellaneous	
i.	The project proponent shall make public the environmental clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising in at least in two local newspapers of the District or State of which one shall be in the vernacular language within seven days and in addition, this shall also be displayed in the project proponent's website permanently.	Being complied, Environmental Clearance accorded from MoEF&CC dated on 10.02.2020 and the same was advertised in two local newspapers on 14.02.2020 (Dinamani and The New Indian Express) which are widely circulated in the region of which Tamil is the vernacular language of the locality concerned. EC accorded is displayed in our website. Please refer <i>Annexure 9</i>
ii.	The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies, Panchayats and Municipal Bodies in addition to the relevant offices of the Government who in turn has to display the same for 30 days from the date of receipt.	Complied, Copy of the environmental clearance dated 10.02.2020 is submitted to the Heads of local bodies on 30.05.2020 and Panchayats on 20.02.2020. Please refer <i>Annexure</i> 10
iii	The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and update the same on half-yearly basis.	Complied, the compliance of the stipulated environment clearance conditions including results of monitored data is uploaded on our website at half-yearly basis and the latest one updated on to website on 09.01.2023
iv	The project proponent shall monitor the criteria pollutants level namely; PM_{10} , SO_2 , NO_X (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects and display the same at a convenient location for disclosure to the public and put on the website of the company.	Complied, the criteria pollutant levels namely; PM_{10} , $PM_{2.5}$, SO_2 , NO_X , CO are displayed near the entrance of main gates of our company in the public domain & also uploaded in our website as in the six monthly compliance report.

SI. No	Condition	Compliance
v.	The project proponent shall submit six-monthly reports on the status of the compliance of the stipulated environmental conditions on the website of the ministry of Environment, Forest & Climate Change at environmental clearance portal.	Being complied, Six-monthly reports on the status of the compliance of the stipulated EC are being uploaded to the website of the ministry of Environment, Forest & Climate Change, Parivesh portal.
vi.	The project proponent shall submit the environmental statement for each financial year in Form-V to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently and put on the website of the company.	Being complied, the Environmental Statement as prescribed under the Environment (Protection) Rules, 1986, for each financial year ending 31 st March in Form-V is being submitted every year and displayed on the website of the company. To the FY 2021-22 the report has been submitted on 23.09.2022.For Fy23 report will be submitted before the time line.
vii.	The Project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities, commencing the land development work and start of production operation by the project.	Complied, date of financial closure and land development work has been informed to the JCEE of TNPCB, Salem dated 25.11.2020 and the same has been communicated through six months compliance report.
viii.	The project authorities must strictly adhere to the stipulations made by the State Pollution Control Board and the State Government.	Abide by the order
ix.	The project proponent shall abide by all the commitments and recommendations made in the EIA/EMP report, commitment made during Public Hearing and also that during their presentation to the Expert Appraisal Committee.	Abide by the order
x.	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEF&CC).	Abide by the order
xi.	Concealing factual data or submission of false/fabricated data may result in revocation of this environmental clearance and attract action under the provisions of Environment (Protection) Act, 1986.	Abide by the order
xii.	The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.	Abide by the order
xiii.	The Ministry reserves the right to stipulate additional conditions if found necessary. The Company in a time bound manner shall implement these conditions.	Abide by the order
xiv.	The Regional Office of this Ministry shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring reports	Abide by the order

SI. No	Condition	Compliance
xv.	The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and Rules and any other orders passed by the Hon'ble Supreme Court of India / High Courts and any other Court of Law relating to the subject matter.	Abide by the order
xvi.	Any appeal against this EC shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010	Abide by the order

Compliance status to the EC (Amendment) dated 07.08.2019

Subject: Expansion of integrated Steel Plant (1.0 MTPA to 1.3 MTPA) of M/s. JSW Steel Ltd., Located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu – Amendment in Environmental Clearance issued dated 07.07.2017 – Reg.

1. This refers to the application of M/s. JSW Steel Limited made vide proposal no. IA/TN/IND/26508/2015 dated 15th March, 2019 along with Form I and sought for amendment in the specific condition no. vii pertaining to zero liquid discharge of the Environmental Clearance accorded by the Ministry vide letter no. F.No. J-11011/281/2006-IA-11(1) dated 7th July, 2017.

2.As per specific condition no. vii. "no effluent shall be discharged outside the plant premises and Zero discharge shall be adopted". Project proponent sought amendment in the condition as "Zero discharge for the complete steel plant complex including CPPs".

The compliance status for the EC conditions to the Amendment dated 07.08.2019 is given in below table.

SI. No.	Condition	Compliance
		Complied.
		There is no discharge any effluent outside the plant
	The specific condition no. vii given at paragraph	premises and Zero wastewater discharge (except
	no.26 of the EC accorded vide letter dated 7	rainwater along with surface runoff during monsoon)
	/07/2017 shall read as below:	for the complete steel plant completed including
i	"No effluent shall be discharged outside the plant	Captive Power Plants is implemented. As per the latest
	premises and 'zero' discharge for the complete	CTO of CPP II the entire wastewater from the CPP II (3
	steel plant complex including Captive Power	x 30 MW -705 KLD) is being transferred to Steel plant
	Plants (CPPs) shall be adopted.	guard pond for collection, treatment and reuse in Steel
		plant for cooling, dust suppression and gardening
		purpose as consented.

Compliance Status to Environment Clearance dated 07.07.2017

SI. No.	Conditions	Compliance
A.	Specific Conditions	
i.	The occupational health survey of the active workmen involved shall be carried as per the ILO guidelines and all the employees shall cover in every 5 years @ 20% every year.	Being complied. Occupational health survey of the active workmen involved is being carried out as per the ILO guidelines and all the employees are being covered in health survey by 100% every year. All the medical records are available in OHC for ready reference.
ii.	The amount allocated for ESC i.e. Rs.13 Crores shall be provided as CAPEX and the ESC shall be treated as project and monitored annually and the report of same shall be submitted to Regional office of MoEF&CC.	The amount allocated for ESC i.e. Rs.13 Crores is provided as CAPEX and as the action plans are being implemented. The expansion activity has planned in a phased manner (Viz Phase-I: 1.0 MTPA to 1.15 MTPA and Phase-II: 1.15 MTPA to 1.3 MTPA) at an estimated cost of Rs. 1025 Cr. Phase-I expansion activities have been completed and the cost involvement is about Rs.650 Crs till 31.03.2023 the amount spent was 4.97 Crs.
iii.	The project proponent shall provide for solar light system for all common areas, street lights, villages, parking around project area and maintain the same regularly.	Solar panel is installed with the capacity of 60 KW (50 KW at Canteen and 10 KW at R& D building) and the average power generation is in the range of 12 Kwhr and further installations are scheduled year on year.
iv.	The project proponent shall provide for LED lights in their offices and residential areas.	LED based lightings are provided in the offices and township area and the replacement of sodium vapour lamp to LED is increased from 800 KW to 950 KW. Further, plan to install LED lights all over plant.
		Being Complied: There are 39 nos. of Dust analyzers & 23 Nos Gaseous emission monitoring systems are installed as per CTO condition and the real time data of SPM, SO2, NOx and CO are transmitted to the Care Air Centre of TNPCB and CPCB servers
v.	The project proponent should install 24X7 air monitoring devices to monitor air emission and submit report to Ministry and its Regional Office.	Apart from the above, TNPCB is conducting bi-annual survey and Manual monitoring is being conducted by a NABL accredited external laboratory on a monthly basis. The monitoring results are attached as (Annexure 4) and values are well within the permissible limits. The latest TNPCB survey conducted (19.01.2023 to 25.01.2023) results are well within the standards issued by the Board.
vi.	The ETP for Blast furnace effluent should be designed to meet Cyanide standards as notified by the MoEF&CC.	There are two blast furnaces in our plant. BF#1 is having wet type gas cleaning plant and BF#2 is having dry type GCP. Presence of Cyanide level is not detected in Blast Furnace #1 effluent and the same is periodically ensured with external NABL accredited lab analysis SPCB also collecting effluent sample on monthly basis from the guard pond and the results evident that cyanide level is not detected.

SI. No.	Conditions	Compliance
vii.	No effluent shall be discharged outside the plant premises and 'zero' discharge shall be adopted.	Wastewater generated from the various processes of steel plant and CPP II (3 x 30 MW) is collected in a guard pond which is installed in steel plant and after pretreatment, treated water is 100 % reused in steel plant processes as per the CTO.
viii.	The ETP for coke oven by-product should be designed to meet EPA notified standards especially the cyanide and phenol.	Our Coke oven plant is non-recovery type. Hence, ETP is not envisaged.
ix.	Coke oven plant should meet visible emission standards notified by the MoEF&CC.	Our plant is non recovery type and also the coke oven process works on i) negative pressure ii) stamped wet coal is being charged to the ovens which is side loading and thereby no visible emission is noticed.
x.	The standards issued by the Ministry vide G.S.R. 277(E) dated 31st March 2012 shall be strictly adhered to and the standards prescribed for the Coke oven plant shall be monitored and the report should be submitted along with the six-monthly compliance report.	Being complied. The standards issued by the Ministry vide G.S.R. 277(E) dated 31st March 2012 are related to emission standards of Iron and Steel plant. As per the standard the emission related to coke oven plant is applicable to by product type and our Coke Oven plant is of non-recovery type. Emission standards with respect to stack (COP waste gas is used for steam generation and COP stacks are functioning as emergency stack) and fugitive emissions to the COP are being monitored and the results are submitted along with the six-monthly compliance report. Since, our plant is non-recovery type ETP is not anticipated for COP. All other emissions & effluent parameters related to sinter plant, blast furnace, steel making shop, mills are being monitored monthly and the values are well within the standard prescribed. The six months monitoring results (maximum, minimum and average) by TNPCB and NABL accredited laboratory for stack emissions are given in <i>Annexure 3</i> and Effluent quality monitoring results are given in <i>Annexure 5</i> .

SI. No.	Conditions	Compliance
xi.	The emission standards specified in the Environmental (Protection) Amendment Rules, 2015 issued by vide S.O. 3305 (E) dated 7th December 2015 for the Thermal Power Plant shall be strictly adhered to.	Being Complied: At present CPP-II power generation capacity is 90 MW (3x30 MW). A coal-based boiler which is installed in CPP II 2006 and the parameters of SPM, SO2, Mercury are in the range of 35-40, 500-550, BDL against the norms of 50, 600, 0.03 mg/Nm3 respectively. Specific water consumption is in the range of 3.1 – 3.3 m3/Mwh against the norms of 3.5 m3/Mwh. NOx emission will be complied before the time line issued and at present no proven technology is not available and actions are being initiated to explore BAT. Fly ash generated is 100% disposed to local fly ash brick manufacturers. In the additional 1 x 30 MW CPP which was installed in 2019 with air cooled condenser and the specific water consumption is about 0.3 m3/Mwh
xii.	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November 2009 shall be followed.	Being Complied: To meet the National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November 2009 Continuous Ambient Air Quality monitoring stations of four numbers are installed in the plant periphery. One station is installed to monitor PM10, PM2.5, SO2, NOx and CO and other 3 stations are installed to monitor PM10, PM2.5, SO2 as per the CTO condition. The real time data are connected to Care Air Centre of TNPCB & CPCB. Apart from this, ambient air quality is monitored in the surrounding villages by TNPCB during the bi- annual survey and also monitored by a NABL accredited laboratory to the defined locations to the parameters issued by the Ministry vide G.S.R. No. 826(E) dated 16th November 2009. The monitored results (maximum, minimum & average) is enclosed in <i>Annexure 3</i> .
xiii.	On-line ambient air quality monitoring and continuous stack monitoring facilities for all the stacks shall be provided and sufficient air pollution control devices viz. Electrostatic precipitator (ESP), and bag filters etc. shall be provided.	Continuous Ambient Air Quality monitoring stations of four numbers are installed in the plant periphery. One station is installed to monitor PM10, PM2.5, SO2, NOx and CO and other 3 stations are installed to monitor PM10, PM2.5, SO2 as per the CTO condition. The real time data are connected to Care Air Centre of TNPCB& CPCB. Online continuous monitoring systems are installed in process and non-process stacks as per the CTO condition to monitor SPM, SO2 & NOx. The real time data is connected with TNPCB & CPCB servers. Adequate Air Pollution Control measures are installed in the respective processes and to control the fugitive emissions secondary de-dusting systems are installed in BF & SMS. The details of APC measures installed are given in <i>Annexure 12</i> .

SI. No.	Conditions	Compliance
xiv.	A statement on carbon budgeting including the quantum of equivalent CO2 being emitted by the existing plant operations, the amount of carbon sequestered annually by the existing green belt and the proposed green belt and the quantum of equivalent CO2 that will be emitted due to the proposed expansion shall be prepared by the project proponent and submitted to the Ministry and the Regional Office of the Ministry. This shall be prepared every year by the project proponent. The first such budget shall be prepared within a period of 6 months and subsequently it should be prepared every year.	A statement on carbon budgeting is prepared as per the condition and detailed report is submitted to Ministry dated on 15.02.2018, 11.06.2019, 23.09.2020, 01.11.2021, 30.06.2022 and 24.06.2023. The quantum of equivalent CO2 being emitted by the existing plant operations in FY23 is 28,10,308 MT/year. The amount of carbon sequestered in FY23 by the existing green belt is 5699 MT. The proposed green belt for FY24 is 11000 Nos. The statement report for the financial year 2023 is attached herewith as Annexure 15.
xv.	For the employees working in high temperature zones falling in the plant operation areas, the total shift duration will be 4 hrs or less per day where the temperature is more than 50oC. Moreover, the jobs of these employees will be alternated in such a way that no employee is subjected to working in high temperature area for more than 1 hr continuously. Such employees would be invariably provided with proper protective equipment, garments and gears such as head gear, clothing, gloves, eye protection etc. There should also be an arrangement for sufficient drinking water at site to prevent dehydration etc.	Employees working in high temperature zones are in the range of 45 °C and of those employees are swapped to other jobs and ensure that no employee is subjected to work in high temperature area for more than 1 hr continuously. They are provided with proper protective equipment, garments and gears such as head gear, clothing, gloves, eye protection, etc., and arrangements are made for sufficient drinking water, butter milk and lime juice to prevent dehydration.
xvi.	In-plant control measures and dust suppression system shall be provided to control fugitive emissions from all the vulnerable sources. Dust extraction and suppression system shall be provided at all the transfer points, coal handling plant and coke sorting plant of coke oven plant. Bag filters shall be provided to hoods and dust collectors to coal and coke handling to control dust emissions. Water sprinkling system shall be provided to control secondary fugitive dust emissions generated during screening, loading, unloading, handling and storage of raw materials etc.	Dust suppression systems are provided to control fugitive emissions from all the vulnerable sources like raw material unloading and storage yards. Bag filters and Dry & Wet fog systems are provided in raw material transfer points, coal handling and coke sorting plant of coke oven. To control dust emission bag filters are provided in coal handling area of COP. Water sprinkler systems are provided in various locations to control secondary fugitive dust emissions generated during screening, loading, unloading, handling and storage of raw materials. A tyre washing unit is installed in the main gate entry to control vehicular movement dust emission.
xvii.	Gaseous emission levels including secondary fugitive emissions from all the sources shall be controlled within the latest permissible limits issued by the Ministry vide G.S.R. 414(E) dated 30th May, 2008 and regularly monitored. Guidelines / Code of Practice issued by the CPCB shall be followed.	The G.S.R. 414(E) dated 30th May, 2008 is related to sponge iron plant. In this connection, a representation is submitted to MoEF&CC dated 22.07.17.

SI. No.	Conditions	Compliance
xviii.	Hot gases from DRI Kiln should be passed through dust settling chamber (DSC) to remove coarse solids and After Burning Chamber (ABC) to burn CO completely and used in Waste Heat Recovery (WHRB). The gas then shall be cleaned in ESP before dispersion out into the atmosphere through ID fan and stack. ESP shall be installed to control the particulate emission from WHRB.	The existing and expansion of the steel plant is following blast furnace route and there is no DRI process in our operations. In this connection, a representation is submitted to MoEF&CC dated 22.07.17.
xix.	Efforts shall further be made to use maximum water from the rain water harvesting sources. If needed, capacity of the reservoir shall be enhanced to meet the maximum water requirement.	Being Complied. Rain water harvesting ponds are provided near at township (East side) with the capacity of 17500 KL, West side of Township STP with the capacity of 33000 KL, Near RO plant area 15000 KL and plant guest house backside 4000 KL. The overall collection capacity is 69500 KL. The collected water is being recharged, reused in steel plant. Capacity of the rain water harvesting ponds will be enhanced based on the needs and requirement
xx.	Risk and Disaster Management Plan along with the mitigation measures shall be prepared and a copy submitted to the Ministry's Regional Office, SPCB and CPCB within 3 months of issue of environment clearance letter.	Complied: Study on Risk and Disaster Management Plan was conducted and the detailed report with summary is submitted to Ministry's Regional Office, SPCB, and CPCB on 01.02.2018 and the same is periodically reviewed and updated.
xxi.	All the blast furnace (BF) slag shall be granulated and provided to cement manufacturers for further utilization. Flue dust from sinter plant and SMS and sludge from BF shall be re-used in sinter plant. Coke breeze form coke oven plant shall be used in sinter and pellet plant. SMS slag shall be given for metal recovery and properly utilized. All the other solid waste including broken refractory mass shall be properly disposed-off in environment-friendly manner.	Being Complied: Blast Furnace Slag is converted to Granulated slag and now using in the GGBFS facility for value added product. Flue dust from blast furnace, sludge from BF & EOF, Coke breeze from coke oven plant are re-used in sinter plant. Pellet plant is not installed in our process. SMS slag is sent for metal recovery system and the crushed slag is reused in internal applications like sinter plant, EOF as hearth layer and cooling media respectively and to cement industries. Based on the R&D initiative crushed EOF slag is used produce paver which is used for internal road making. Refractories are selected to withstand high temperature whose self-life is longer and generation of used refractories are lesser. The same is recycled in downstream applications/disposed to recycling vendors.
xxii.	Coal and coke fines shall be recycled and reused in the process. The breeze coke and dust from the air pollution control system shall be reused in sinter plant. The waste oil shall be properly disposed of as per the Hazardous and Other Waste (Management and Transboundary Movement) Rules, 2016.	Being Complied: Coal and coke fines are recycled and reused in the Sinter plant and Blast Furnace. Coke breeze and dust from the air pollution control systems are collected and reused in the Sinter Plant. The waste oil generated from the process is being disposed to authorized vendor as per the Hazardous

SI. No.	Conditions	Compliance
		and Other Waste (Management and Transboundary Movement) Rules, 2016.
xxiii.	Green belt shall be developed in 33 % of plant area. Selection of plant species shall be as per the CPCB guidelines in consultation with the DFO.	Being complied. The existing greenbelt developed is around 262421 Nos with area cover of about 91.28 Ha of the total area which is about 34.05 % and most of the sapling are planted native species in consultation with Forest department. The tree plantation details are given in <i>Annexure 13</i>
xxiv.	All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Steel plants and Coke Oven Plants shall be implemented.	Complied. All the recommendations of the Charter on the Corporate Responsibility for the Environmental Protection (CREP) issued for the steel plants are implemented. Updated Compliance status report of CREP is enclosed vide <i>Annexure 8</i>
xxv.	At least 2.5% of the total cost of the project shall be earmarked towards the Enterprise Social Commitment based on Public Hearing issues, locals need and item-wise details along with time bound action plan shall be prepared and submitted to the Ministry's Regional Office. Implementation of such program shall be ensured by constituting a Committee comprising of the proponent, representatives of village Panchayat and District Administration. Action taken report in this regard shall be submitted to the Ministry's Regional Office.	Being Complied: As per the EC Specific condition ii, Rs.13 Crores is allotted towards ESC have been earmarked. Public Hearing issues, locals need and item-wise details along with time bound action plan is prepared and actions are being taken in a time bound manner. The expansion activity is planned in a phased manner (Viz Phase-I: 1.0 MTPA to 1.15 MTPA and Phase-II: 1.15 MTPA to 1.3 MTPA) at an estimated cost of Rs. 1025 Cr. Phase-I expansion activities were completed and the cost involvement is about Rs.650 Crs and till date the amount spent towards ESC is about 4.97 Crs. Due to the steel market condition and the present pandemic (COVID19) situation the phase-II expansion activity is postponed and the same will be established with in the time line EC validity. Based on the local needs ESC spent heads are slightly modified and the same has been communicated to your good office via mail dated 26.09.2020. JSW assures that the commitments made shall be fulfilled. The details are attached in <i>Annexure 11</i>
xxvi.	The proponent shall prepare a detailed CSR plan for every year for the next 5 years for the existing-cumexpansion project, which includes village-wise, sector-wise (Health, Education, Sanitation, Health, Skill Development and infrastructure requirements such as strengthening of village roads, avenue plantation, etc) activities in consultation with the local communities and administration. The CSR plan will include the amount of 2% retain annual profits as provided for in Clause 135 of the Companies Act, 2013 which provides for 2% of the average net profits of previous 3 years towards CSR activities for life of the project. A separate budget head shall be created and the annual capital and revenue	Complied: CSR plan for 5 years (from 2017 to 2022) is prepared as per condition and activities are completed. The updated report of CSR including Fy23 (from 2017) is enclosed vide <i>Annexure 14</i>

SI. No.	Conditions	Compliance			
	expenditure on various activities of the plan shall be submitted as part of the compliance report to RO. The details of the CSR plan shall also be uploaded on the company website and shall also be provided in the Annual Report of the company. The plan so prepared shall be based on SMART (Specific, Measurable, Achievable, Relevant and Time bound) concept. The expenditure should be aimed at sustainable development and direct free distribution and temporary relief should not be included.				
xxvii	All the commitments made to the public during the Public Hearing / Public Consultation meeting shall be satisfactorily implemented and a separate budget for implementing the same shall be allocated and information submitted to the Ministry's Regional Office at Chennai.	Complied: Commitments made to the public during the Public Hearing is satisfactorily implemented.			
xxviii.	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Being complied: Now there is no expansion activity. Provisions will be made for the expansion project activities and as per the condition temporary structure will be removed after the completion of expansion activities.			
В.	GENERAL CONDITIONS				
i.	The project authorities must strictly Adhere to the stipulations made by the concerned State Pollution Control Board and the State Government.	Being complied: Stipulations made by the Tamil Nadu Pollution Control Board and the State Government is strictly adhered to compliance.			
ii.	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEF&CC).	Being Complied: There is no further expansion or modification in the plant is carried out without prior approval of Ministry of Environment, Forests and Climate Change (MoEF&CC)			
iii.	At least four ambient air quality monitoring stations should be established in the downward direction as well as where maximum ground level concentration of PM10, PM2.5, SO2 and NOX are anticipated in consultation with the SPCB. Data on ambient air quality and stack emission shall be regularly submitted to this Ministry including its Regional Office at Chennai and the SPCB/CPCB once in six months.	Being Complied: With the consultation of TNPCB four numbers of Continuous Ambient Air Quality monitoring stations are installed in the plant premises where maximum ground level concentration of PM10, PM2.5, SO2 and NOx is taking place. Data on Ambient Air Quality and Stack emission reports are being submitted to Ministry, MoEF&CC, Regional Office at Chennai and the SPCB/CPCB once in six months.			

SI. No.	Conditions	Compliance					
iv.	Industrial wastewater shall be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December 1993 or as amended from time to time. The treated waste water shall be utilized for plantation purpose.	Being Complied: Industrial wastewater is being collected, treated and reused 100 % in the processes for cooling application and plantation purpose. Quality parameters are conformed to the prescribed standards under GSR 422 (E) dated 19th May, 1993 and 31st December 1993. The treated wastewater analysis report given by TNPCB & NABL accredited laboratory is given in <i>Annexure 5</i> .					
v.	The overall noise levels in and around the plant shall be kept well within the standards (85 dB(A)) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz. 75 dB(A) during day time and 70 dB(A) during night time.	Being Complied: Source and Ambient noise levels are measured in and around the plant areas on monthly basis and control measures like acoustic hoods, silencers, and enclosures are provided wherever required. The noise levels of source and ambient are well within the standards prescribed under EPA Rules, 1989. Apart from this visual display boards are displayed to wear earplug, ear muff as PPE wherever required. The noise monitoring results by NABL accredited laboratory is enclosed in <i>Annexure 7</i> .					
vi.	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Being Complied: Health surveillance (Annual Health Check-up) is being conducted for all employees of yearly basis and records are being maintained in the Occupational Health Centre.					
vii.	The company shall develop rain water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.	Being Complied. Rain water harvesting ponds are provided near a township (East side) with the capacity of 17500 Kl West side of Township STP with the capacity of					
viii.	The project proponent shall also comply with all the environmental protection measures and safeguards recommend in the EIA/EMP report. Further, the company must undertake socio-economic development activities in the surrounding villages like community development programmes, educational programmes, drinking water supply and health care etc.	Complied: To comply the environmental protection measures and safeguards as per the recommendation of EIA/EMP report, dust suppression systems like water sprinklers and dry fog systems for control of fugitive emissions arising from material handling. Bag filters are provided in the Sinter plant for dust control during crushing of raw materials. ESPs are provided for dust control in the Sintering process and Coal based boiler. Cast house de-dusting systems are installed in both the Blast Furnace I & II for fugitive dust control in the casting process. Wet Gas cleaning systems are provided in Blast Furnace I and Dry Gas cleaning systems are provided in Blast Furnace II.					

SI. No.	Conditions	Compliance
		Quenching tower with grit arrestor is provided to control emission during coke quenching (wet type). Secondary de-dusting system (bag filters) are provided in Energy Optimizing Furnaces I & II, Ladle Refining Furnaces. Apart from the above we undertake socio-economic development activities in the surrounding villages like community development programmes, educational programmes, drinking water supply and health care etc. The details are given (<i>Annexure 14</i>) in the six months' report of CSR.
ix.	Requisite funds shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment, Forest and Climate Change (MoEF&CC) as well as the State Government. An implementation schedule for implementing all the conditions stipulated herein shall be submitted to the Regional Office of the Ministry at Chennai. The funds so provided shall not be diverted for any other purpose.	Complied: For environment pollution control measures capital cost and recurring cost/annum for environment pollution control measures are being implemented to the completed projects. Till March 2023 the cost of Rs.1.0 crores (appx) has been spent for environment pollution control measures as capital cost. Recurring cost/annum to the environment pollution control measures of Rs.9.80 crores (appx) has been spent.
x.	A copy of clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parishad/ Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	Complied: Copy of clearance letter is submitted to local administration on 14.07.2017. The copy of clearance letter is uploaded in our website.
xi.	The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of the MoEF&CC at Chennai. The respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; PM10, SO2, NOX (ambient levels as well as stack emissions) or critical	Complied: The compliance of the stipulated environment clearance conditions including results of monitored data is uploaded in our website once in six months. Simultaneously the compliance reports are being submitted (email) to the Regional Office of the MoEF&CC at Chennai and the Zonal Office of CPCB, Bangalore and the TNPCB, Chennai.
	sectoral parameters, indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain. The project proponent shall also submit six monthly	The criteria pollutant levels namely; PM10, PM2.5, SO2, NOX, CO (real time values) and stack emissions (manually monitored values) are displayed near both entrance of our company in the public domain. Complied: Environmental conditions and compliance
xii.	reports on the status of the compliance of the stipulated environmental conditions including results of monitored data (both in hard copies as well as by e-mail) to the Regional Office of	status report including results of monitored data is being submitted once in six months to the Regional Office of MoEF&CC, Chennai (by email), and Zonal Office of CPCB, Chennai and TNPCB, Chennai.

SI. No.	Conditions	Compliance
	MoEF&CC, the respective Zonal Office of CPCB and the SPCB. The Regional Office of this Ministry at Chennai/CPCB/SPCB shall monitor the stipulated conditions.	
xiii.	The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Office of the MoEF&CC at Chennai by e-mail.	Being Complied: As prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, the environmental statement for each financial year ending 31st March in Form-V and status of compliance of environmental conditions is being submitted to the Regional Office of the MoEF&CC at Chennai. To the FY 2021-22 the report has been submitted on 23.09.2022. To the FY23 such repot will be submitted at the earliest.
xiv	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be sent at website of the Ministry of Environment, Forests, and Climate Change (MoEF&CC) at http:/envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional office at Chennai.	Complied: Environmental Clearance accorded from MoEF&CC dated on 07.07.2017 and the details have been advertised in Dinamani and The Indian Express on 14.07.2017. The same was advertised two local newspapers (Dinamani and The Indian Express) which are widely circulated in the region of which Tamil is the vernacular language of the locality concerned. A copy of the same is submitted to the MoEF&CC Regional office at Chennai on 15.07.2017.
xv	Project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.	Complied: Date of financial closure and land development work is informed to Regional Office vide letter dated 12.10.2017.

Note: To the value addition of Steel Ball under product mix a NIPL approval obtained from TNPCB on 28.11.2022 and the copy of certificate is attached as *Annexure 18* and a copy of the certificate has been submitted to MoEF&CC, New Delhi dated 01.12.2022.

ANNEXURE 1 PRODUCTION DETAILS

Annexure 1

I. <u>Production details for the period of Oct 22 to Mar '23.</u>

	Steel Plant						
Month	Products		Product				
	Steel production	Ferrous Sulfate Liquid Oxygen Liquid Nitrogen Liquid Argon				Pig Iron	Power generation
UoM	MT		M	MT	MW (Avg load)		
Oct-22	98695	91.2	441.1	0.0	211.8	48	64.34
Nov-22	95213	88.0	73.6	0.0	241.7	238	62.04
Dec-22	100180	79.2	69.1	0.0	225.3	357	63.05
Jan-23	93542	97.5	158.7	0.0	193.9	176	65.51
Feb-23	86109	69.0	279.7	0.0	200.8	0	64.63
Mar-23	94773	67.2	317.6	0.0	228.7	0	64.58
Total	568510	492.1	1339.7	0.0	1302.2	819	64.0
Consented quantity per Annum	1150000	1200	15000	2000	8000	300000	90.0

Note:

• MT - Metric Ton

• MW - Mega watt

ANNEXURE 2 WASTE GENERATION DETAILS

Annexure 2

Waste generation details for the period of Oct 22 – March 23

Month	Steel Plant & CPP II									
	Hazardous Waste	BF granulated Slag	SMS Slag	GCP sludge	Mill scale	Fly Ash	APC dust	E - waste	Bio medical waste	Battery waste
UoM	MT/Month Kg/M							Kg/Month		
Oct-22	4.6	35536.1	21708.8	3172.1	1453.5	690.7	525.6	405	0.28	1300
Nov-22	5.0	34207.4	20948.4	3067.9	1199.5	593.6	508.3	38	0.275	630
Dec-22	44.9	36678.2	22002.5	3178.8	1350.5	921.6	622.3	1247	0.32	0
Jan-23	6.2	33328.2	20597.2	2973.0	1368.6	817.6	547.1	142	0.375	5700
Feb-23	14.9	30854.7	18941.2	2770.6	1163.9	691	499.1	167.000	0.265	390
Mar-23	8.8	34801.9	20887.6	3052.7	1282.2	775.1	599.0	108.000	0.295	10
Total	84.5	205407	125086	18215	7818	4490	3301	2107.00	1.810	8030.00

ANNEXURE 3 STACK EMISSION MONITORING REPORT OF TNPCB & NABL ACCREDITED LABORATORY

Annexure 3
Stack emission monitoring report of TNPCB & NABL accredited laboratory for the period Oct 22 to Mar '23.

I. Stack emission monitoring results of TNPCB							
SI. No	Stack attached to	Discharge rate in (Nm³/Hr)	Pollutants Concentration (mg/Nm³)				
		_	PM	SO ₂	NO _x		
	Sinter Plant - I - Sinter Machine	76626	69	35	11.2		
2	Sinter Plant – I - Cooling System	86123	68	_	_		
3	Sinter Plant – I Dedusting System	93254	39	_	_		
4	Sinter Plant – I RMHS	18378	68	_	_		
5	Sinter Plant - II - Sinter Machine	513163	66	_	_		
6	Sinter Plant - II - Cooling & De-dusting System	435787	55	_	_		
7	Sinter Plant - II - RMHS	92986	44	_	_		
8	Blast Furnace - I - Hot stove	48256	32	45	19		
9	Blast Furnace - I - Stock House	42717	63	_	_		
10	Blast Furnace - I - Cast House	220041	68	_	_		
11	Blast Furnace - II - Hot stove	68723	28	32	18		
12	Blast Furnace - II - Stock House	256359	47	_	-		
13	Blast Furnace - II - Cast House	361690	60	_	_		
14	Blast Furnace - II - PCI	31884	33	21	8		
15	Process Boiler (1*25TPH)&(1*8TPH)	22460	28	112	68		
16	VD boiler	13155	34	72	40		
17	Energy Optimizing Furnace -I	70714	65	_	_		
18	Energy Optimizing Furnace -II	59207	63	_	_		
19	EOF Secondary dedusting system I & II	336777	72	_	_		
20	CCM - 3 Billet Grinnding Mechine	22537	57	_	_		
21	Ladle Refining Furnace - 2,3,4	66465	31	_	_		
22	CCM-I Steam Exhaust	17254	33	_	_		
23	CCM-II Steam Exhaust - I & II	14727	47	_	_		
24	CCM-II Cut fumes Exhaust	46585	55	_	_		
25	BRM – Re Heating Furnace	73199	74	99	6		
26	BLM – Re Heating Furnace -I	30899	60	83	30		
27	BLM – Re Heating Furnace -II	37719	45	69	35		
28	LRF - 1 primary & LRF 1 to 4–secondary de dusting system	359835	57	_	_		
29	Coke Oven - WHRB -I	40990	36	131	6		
30	Coke Oven - WHRB -III	89633	45	171	7		
31	Coke Oven - WHRB -IV	51852	43	160	8		
	Coke Oven - WHRB -V	56192	39	152	5		
33	BF Gas Fired Boiler	23974	38	80	7		
	DG Set -I (625 KVA) /COP	493	26	19	5		
	DG Set - I (625 KVA) EOF- 1	597	32	29	6		
	DG Set - II (625 KVA) EOF- 1	635	31	27	6		
	CCM-III Steam Exhaust	18741	65		_		
38	Process Boiler area -DG set - 1250 KVA	1104	21	24	3		

39	PICKLING PLANT - ACID FUMES EXHAYST SYSTEM SATACK	17485	37	_	_
40	PICKLING PLANT - ACID - HOT WATER GENERATOR SATACK	919	43	_	_
41	PICKLING PLANT - ACID - MEE- Thermic fluid Heator	3470	38	_	_
42	BF Slag Grinding mill stack	111163	8.2	-	_
43	CCM - 1 Billet Grinnding Mechine	15822	63	_	_
44	CCM - 2 Billet Grinnding Mechine	28453	60	_	-
45	EOF -2 DG set - 1250 KVA	4699	38	27	6.5
46	CCM- 3 DG set - 1250 KVA	6261	25	21	6
47	BRM DG set - 650 KVA	2455	26	27	5
48	Batching plant -1 Cement Silo vent stack	197	25	_	-
49	Batching plant -2 Cement Silo vent stack	209	25	_	-
50	COP Coke cutter de dusting system stack	39215	35	_	-
51	CCM- 3 Steam exhaust system stack - 2	21738	54	_	-
52	AFBC - Boiler	126227	26	196	21
53	COAL CRUSHER CPP 2	3736	62	_	-
54	CPP II COAL SCREENING SECTION	10237	48	-	-
55	DG set - 500 KVA	1113	28	15	10

Stack No.	Source name		Discharge		
NO.		SPM	Average (mg/Nm SO ₂	NO _x	(Nm³/hr)
1	Sinter Machine (Sinter Plant I)	116.5	57.0	47.7	88925
2	Cooling System (Sinter Plant I)	60.3	37.0	47.7	94447
3	Dedusting System (Sinter Plant I)	39.7	_	_	128930
4	Dust Extraction System For RMHS (Sinter Plant I)	40.5	_	_	19072
5	Hot Stove (Blast Furnace I)	26.4	52.6	 46.6	46157
6	GCP Flare (Blast Furnace I) -Emergency stack	15.5			8467
7	Stock House Dedusting System (Blast Furnace I)	56.1	_		79198
8	Dust Extraction System for RMHS (Blast Furnace I)	_			_
9	Cast House Dedusting System (Blast Furnace I)	34.4	_		287353
10	Process Boiler (1*25 TPH) and (1*8 TPH) (Common Stack)	23.3	33.3	29.7	15822
11	Energy Optimizing Furnace (Steel Melting Shop I)	58.2	47.6	44.0	48377
12	Ladle Furnaces (Steel Melting Shop I)	49.6	30.4	28.0	25828
13	Continuous Casting Machine (Steel Melting Shop I)	31.9	-		27175
14	Energy Optimizing Furnace (Steel Melting Shop II)	57.1	46.9	42.3	49217
15	Secondary Dedusting System EOF I&II (Combined SMS II)	53.1		-	417086
16	Sec. Dedusting System of LRF IV(Common) (SMS II)	47.7		_	399920
17	Ladle Furnaces(Common Stack) (Steel Melting Shop II)	46.9	39.7	34.6	50591
18	Vacuum Degasing Unit (Boiler) (Steel Melting Shop II)	30.9	38.0	36.5	19167
19	Steam Exhaust System (2 Nos) (Bloom Caster	30.2			25818
20	Cut Fumes Exhaust System (Bloom Caster)	32.6		_	59628
21	Reheating Furnace (Furnace 1 No2 Chimney) (BLM)	31.1	45.3	42.8	25410
22	Reheating Furnace (Furnace 1 No1 Chimney) (BLM)	31.0	38.3	35.7	28456
23	Coke Oven Chimney 1A & 1B (Coke Oven) -Emergency stack		_	_	
24	Coke Oven Chimney II (Coke Oven) -Emergency stack		_		_
25	Coke Oven Chimney III (Coke Oven) -Emergency stack		_		
26	Waste Heat Recovery Boiler I (Coke Oven)	30.5	336.3	272.9	55287
27	Waste Heat Recovery Boiler II (Coke Oven)	29.8	324.8	274.6	55960
28	Waste Heat Recovery Boiler III (Coke Oven)	31.8	326.4	279.1	55489
29	Waste Heat Recovery Boiler IV (Coke Oven)	27.1	327.9	267.0	55136
30	Waste Heat Recovery Boiler V (Coke Oven)	27.8	324.7	261.1	56166
31	BF Gas Fired Boiler	29.0	19.5	18.0	37674
32	Reheating Furnace (Bar & Rod Mill)	34.2	43.9	41.7	73005
33	Sinter Machine (Sinter Plant II)	127.4	61.3	51.4	527610
34	Plant Dedusting and Cooling (Sinter Plant II)	59.9	_		460408
35	Crushing of Fuel & Raw Materials (Sinter Plant II)	53.5	_	_	106985
36	Hot Stove (Blast Furnace II)	24.3	52.4	46.2	69144
37	GCP Flare (Blast Furnace II) -Emergency stack	14.4	_	_	21108
38	Stock House Dedusting & RMHS (Blast Furnace II)	57.9	_	_	261940
39	Cast House Dedusting System (Blast Furnace II)	55.1	_	_	511429
40	Pulverized Coal Injection (Blast Furnace)	54.7	_	_	36640
41	Steam exhaust system -2	27.3		l	26026
42	Steam Exhaust System - 1 CCM-III	29.7	_	_	32070
43	Steam Exhaust System - 2 CCM-III	26	_	_	32223
44	Pickling Plant- Acid Fumes exhaust system stack	13		_	19777
45	Pickling plant - MEE – Thermic fluid Heater	42	23	44	5001
46	Pickling Plant- Acid - Hot water Generator Stack	22	21	39	1892
47	Picklig plant - ARP - Hot water Generator	_	_	_	_
48	GGBFS BF Slag Grinding mill stack	8		_	138329
49	GGBFS BF Slag Grinding unit- Sinter waste Gas			_	_
50	GGBFS BF Slag Grinding unit- Hot Air Generator			_	
51	Billet grinding machine stack - ABGM -1	37		_	24262
52	Billet grinding machine stack -ABGM - 2	36		_	35643
53	Billet grinding machine stack -ABGM - 3	45		_	30071
54	Batching plant#1 Cement silo vent stack	24		_	2590.1
55	Batching plant#2 Cement silo vent stack	25		_	2590.0
56	Coke cutter dedusting system stack	36		_	43771
57	CPPII-AFBC Boiler	26	548	445	93742
58	CPPII-Coal crusher	40		_	5379
		42	1	1	15025

ANNEXURE 4 ONLINE STACK EMISSION MONITORING & AMBIENT AIR QUALITY MONITORING REPORT

Annexure 4

Online stack emission monitoring & Ambient air quality monitoring report for the period Oct'22 to Mar'23

I. Online stack emission monitoring summary report (Oct '22 to Mar'23)

Ctaal: N:	Course	Parameter	IIIe M	Month					
Stack No.	Source name	Month	UoM	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
_		SPM	mg/Nm ³	0.07	36.01	34.98	32.77	58.45	70.39
1	Sinter Machine (Sinter Plant I)	SO ₂	mg/Nm ³	0.12	36.72	52.57	45.46	41.37	81.13
2	Cooling System (Sinter Plant I)	SPM	mg/Nm ³	39.61	31.01	33.86	33.72	42.10	51.68
3	Dedusting System (Sinter Plant I)	SPM	mg/Nm ³	33.61	36.79	43.48	34.76	25.03	30.76
4	Dust Extraction System For RMHS (Sinter Plant I)	SPM	mg/Nm ³	6.62	0.58	11.41	13.76	21.51	16.04
		SPM	mg/Nm ³	16.25	22.98	21.36	13.96	14.99	22.86
_	Het Ctave (Plant Formand I)	SO ₂	mg/Nm ³	25.51	98.00	82.55	83.80	54.14	68.34
5	Hot Stove (Blast Furnace I)	NOx	mg/Nm ³	13.78	52.35	48.72	48.69	45.80	41.74
		СО	ppm	1693.90	2537.26	2294.31	1944.23	1516.88	1751.28
	CCD Flore (Plant Furnance)). Foreign and stable	NA	NA	_	_	_	_	_	_
6	GCP Flare (Blast Furnace I) -Emergency stack	NA	NA	_	_	_	_	_	_
7	Stock House Dedusting System (Blast Furnace I)	SPM	mg/Nm ³	23.48	20.69	18.99	12.05	6.69	7.00
,	Stock house Dedusting System (blast Fulliace I)	SO ₂	mg/Nm ³	7.09	8.54	7.08	2.34	6.64	7.03
8	Dust Extraction Cystem for DMUC (Plant Extraces I)	SPM	mg/Nm ³	0	0	0	0	0	0
0	Dust Extraction System for RMHS (Blast Furnace I)	SO ₂	mg/Nm ³	0	0	0	0	0	0
9	Cost House Deducting System (Plant Furnace I)	SPM	mg/Nm ³	3.11	12.34	25.79	10.50	12.36	23.85
9	Cast House Dedusting System (Blast Furnace I)	SO ₂	mg/Nm ³	18.47	22.47	27.37	23.68	29.67	30.87
10	CDD Deiler 2 Nee of 25 TDU cook (Common Stock)	SPM	mg/Nm ³	22.99	29.26	33.69	36.35	34.78	36.90
10	CPP I Boiler 2 Nos of 25 TPH each (Common Stack)	SO ₂	mg/Nm ³	19.57	17.75	20.42	19.79	20.76	27.15
11	Energy Optimizing Furnace (Steel Melting Shop I)	SPM	mg/Nm ³	94.10	99.93	79.44	77.84	66.43	20.54
12	Ladle Furnaces (Steel Melting Shop I)	SPM	mg/Nm ³	14.50	3.12	27.47	15.31	18.50	20.63
13	Continuous Casting Machine (Steel Melting Shop I)	SPM	mg/Nm ³	1.97	2.00	1.72	1.70	2.69	2.16
14	Energy Optimizing Furnace (Steel Melting Shop II)	SPM	mg/Nm ³	40.21	27.81	34.95	38.14	32.83	83.67
15	Secondary Dedusting System EOF I&II (Combined SMS II)	SPM	mg/Nm ³	33.04	35.44	29.06	19.04	21.34	39.80
16	Sec. Dedusting System of LRF IV(Common) (SMS II)	SPM	mg/Nm ³	14.15	13.68	15.50	10.65	16.38	20.62
17	Ladle Furnaces(Common Stack) (Steel Melting Shop II)	SPM	mg/Nm ³	4.58	6.08	12.53	3.45	12.89	13.85
18	Vacuum Degasing Unit (Boiler) (Steel Melting Shop II)	SPM	mg/Nm ³	38.88	43.18	35.44	21.71	17.83	23.05
19	Steam Exhaust System 1 (Bloom Caster	SPM	mg/Nm ³	6.14	4.15	4.39	6.09	5.78	5.67
19	Steam Exhaust System 2 (Bloom Caster	SPM	mg/Nm ³	6.17	4.70	5.23	6.84	6.14	6.10
20	Cut Fumes Exhaust System (Bloom Caster)	SPM	mg/Nm ³	0.73	0.64	0.48	0.55	1.83	0.94
21	Reheating Furnace (Furnace 1 No2 Chimney) (BLM)	SPM	mg/Nm ³	62.36	30.79	30.38	50.85	47.58	27.03
		SO ₂	mg/Nm ³	40.50	34.19	35.91	39.15	41.74	33.94
22	Reheating Furnace (Furnace 1 No1 Chimney) (BLM)	SPM	mg/Nm ³	11.85	9.68	9.94	7.75	8.67	13.01
	g. sg. (sdoc) (to) Oliminoy) (DEM)	SO ₂	mg/Nm ³	39.02 43.98 39.60 29.00 28.39 27.03				27.03	
23	Coke Oven Chimney I (Coke Oven) -Emergency stack	NA NA	NA NA	_					
24	Coke Oven Chimney II (Coke Oven) -Emergency stack	NA	NA			Emergency:	stack no flov	ı	
25		NA NA	NA NA						
25	Coke Oven Chimney III (Coke Oven) -Emergency stack	NA	NA						

		Parameter				Mo	nth		
Stack No.	Source name	Month	UoM	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
		SPM	mg/Nm ³	23.40	22.62	18.04	16.61	24.66	24.72
26	Waste Heat Recovery Boiler I (Coke Oven)	SO ₂	mg/Nm ³	149.54	149.66	143.21	166.27	181.42	184.43
		SPM	mg/Nm ³	29.71	70.45	25.48	13.43	31.13	18.94
27	Waste Heat Recovery Boiler II (Coke Oven)	SO ₂	mg/Nm ³	169.53	122.59	152.38	165.00	138.06	150.49
		SPM	mg/Nm ³	27.99	27.19	21.13	21.57	30.67	16.33
28	Waste Heat Recovery Boiler III (Coke Oven)	SO ₂	mg/Nm ³	243.04	157.70	160.77	214.01	217.64	220.72
		SPM	mg/Nm ³	_	_	_	_	_	_
29	Waste Heat Recovery Boiler IV (Coke Oven)	SO ₂	mg/Nm ³	_	_	_	_	_	_
		SPM	mg/Nm ³	_	_	_	_	_	_
30	Waste Heat Recovery Boiler V (Coke Oven)	SO ₂	mg/Nm ³	_	_	_	_	_	_
31	BF Gas Fired Boiler	SPM	mg/Nm ³	29.24	37.65	34.06	20.07	31.93	35.77
20	Palastin Farma (Page Palastin)	SPM	mg/Nm ³	8.32	3.92	10.60	19.97	22.75	25.06
32	Reheating Furnace (Bar & Rod Mill)	SO ₂	mg/Nm ³	15.18	7.83	19.02	6.18	19.36	37.98
22	Cintas Maskins (Cintas Plant II)	SPM	mg/Nm ³	18.51	6.77	13.55	26.06	46.55	57.32
33	Sinter Machine (Sinter Plant II)	SO ₂	mg/Nm ³	80.00	105.51	216.45	68.83	97.58	64.14
34	Plant Dedusting and Cooling (Sinter Plant II)	SPM	mg/Nm ³	17.23	9.20	17.59	11.78	19.30	15.93
35	Crushing of Fuel & Raw Materials (Sinter Plant II)	SPM	mg/Nm ³	1.82	4.24	21.45	15.13	27.24	39.62
		SPM	mg/Nm ³	11.25	18.87	30.05	27.53	17.19	15.24
36	Hot Stove (Blast Furnace II)	SO ₂	mg/Nm ³	0.00	9.63	49.71	43.92	35.54	35.01
30	Tiot Glove (Blast Fulliace II)	NOx	mg/Nm ³	0.19	0.18	20.48	19.35	15.28	23.75
		СО	ppm	1383.95	1459.47	1025.96	419.14	795.54	991.92
37	GCP Flare (Blast Furnace II) -Emergency stack	NA	NA	_	_	_	-	_	_
	Con Trail (Black analog II) Emorgonoy etaek	NA	NA	_	_	-	-	_	_
38	Stock House Dedusting & RMHS (Blast Furnace II)	SPM	mg/Nm ³	0.00	15.18	27.36	25.15	28.82	36.60
30	Glock House Declaring & Nivino (Diase) unlace in	SO ₂	mg/Nm ³	2.39	3.76	7.35	2.65	52.88	15.32
39	Cast House Dedusting System (Blast Furnace II)	SPM	mg/Nm ³	1.79	2.51	4.59	5.23	9.44	17.53
33	Cast House Dedusting System (Diast Furnace II)	SO ₂	mg/Nm ³	13.09	10.72	15.28	0.75	4.72	4.30
40	Pulverized Coal Injection (Blast Furnace)	SPM	mg/Nm ³	15.85	20.55	31.31	15.41	30.96	27.12
70	i arronzoa obai injedilon (biast i ulnace)	SO ₂	mg/Nm ³	0.93	0.86	3.85	4.58	5.04	9.46
41	Steam Exhaust System - CCM-III	SPM	mg/Nm ³	CEMS NOT APPLICABLE					
71	Action Landust Cyclem - CONTIN	NA	NA				I LIOABL	_	
		SPM	mg/Nm ³	20.96	11.44	18.53	18.51	28.31	22.16
42	CPPII-AFBC Boiler	SO ₂	mg/Nm ³	207.32	224.45	132.62	134.44	153.35	201.30
		NOx	mg/Nm ³	137.71	151.76	252.08	355.27	368.79	325.22

II. Continuous Ambient Air Quality Monitoring Results (Oct '22 to Mar'23)

Month			CAAQMS#1			CAAQMS#2				
MOIIII	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	со	PM ₁₀	PM _{2.5}	SO ₂		
UoM	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³	μg/m³	μg/m³	μg/m³		
Oct-22	43	30	7	4	0	39	22	4		
Nov-22	44	33	6	5	0	33	12	5		
Dec-22	57	35	6	7	0	37	13	12		
Jan-23	47	27	5	5	0	45	25	22		
Feb-23	53	32	11	8	0	51	21	17		
Mar-23	42	27	17	14	0	34	34	16		

Month		CAAQMS#3		CAAQMS#4				
Month	PM ₁₀	PM _{2.5}	SO ₂	PM ₁₀	PM _{2.5}	SO ₂		
UoM	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³		
Oct-22	50	18	39	36	23	26		
Nov-22	42	28	38	50	26	28		
Dec-22	48	29	36	42	31	28		
Jan-23	67	37	27	52	38	17		
Feb-23	65	40	32	56	31	17		
Mar-23	55	32	32	37	29	18		

Tolerance limit: PM10: 100 μ g/m³, PM2.5: 60 μ g/m³, NOx: 80 μ g/m³, SO₂: 80 μ g/m³, CO: 1 hr avg - 4 mg/m³, 8 hr avg - 2 mg/m³

The results are well within the prescribed standards.

	III. Ambi	ent Air Qua	lity Monitori	ing results o	of NABL Ac	credited lab	oratory		
Month		AQ-1 (Un	it - μg/m3)			AQ-2 (Un	it - μg/m3)		
WOTH	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
Oct-22	51.98	22.86	11.36	18.03	46.6	20.2	10.8	17.8	
Nov-22	52.96	21.4	10.92	18.39	53.19	21.7	11.01	18.34	
Dec-22	51.73	19.51	9.08	16.69	50.85	19.18	8.93	16.41	
Jan-23	49.9	18.28	8.8	16.25	80.94	18.66	8.98	16.26	
Feb-23	53	20.14	9.52	17.8	55.72	20.22	10.13	18.21	
Mar-23	67.74	27.86	10.93	23.47	65.59	26.21	11.32	23.51	
		ΔQ-3 (Un	it - μg/m3)			ΔQ-4 (Un	it - μg/m3)		
Month	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
Oct-22	55.30	25.60	15.8	22.5	49.7	22.9	14.8	22.2	
Nov-22	51.80	21.1	10.7	17.5	50.3	20.5	10.4	17.3	
Dec-22	52.2	19.7	9.2	16.9	50.02	18.9	8.8	16.2	
Jan-23	51.3	18.8	9.2	16.7	51.5	18.8	9.1	16.2	
Feb-23	53.94	20.49	18.79	18.79	54.44	1	10.25	18.81	
Mar-23	62.48	22.25	23.07	23.07	61.19	20.43	8.96	22.71	
IVIAI-23	02.40	22.23	23.07	23.07	01.19	22.2	8.90	22.71	
Manuella		AQ-5 (Un	it - μg/m3)	AQ-6 (Unit - µg/m3)					
Month	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
Oct-22	47.19	19.32	10.34	17.41	49.44	20.19	10.2	23.2	
Nov-22	51.3	19.8	9.9	17.3	51.9	21	10.7	17.7	
Dec-22	51.1	19.3	9	16.5	53	20	9.3	17.1	
Jan-23	52.5	19.2	9.3	17.1	54	19.8	9.5	17.6	
Feb-23	55.05	20.55	10.7	19.82	57.38	20.92	10.54	19.38	
Mar-23	63.07	24.62	10.5	23.92	63.25	26.08	9.56	25.93	
		1	1	.1	.1	II.		I	
Month		AQ-7 (Un	it - μg/m3)		AQ-8 (Unit - μg/m3)				
WOILLI	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
Oct-22	48.9	21.8	14.3	21.7	51	22.1	11.9	18.4	
Nov-22	52.66	21.49	10.9	18.15	51.86	20.04	10.05	17.16	
Dec-22	51.08	19.27	8.97	16.48	49.2	18.56	8.64	15.88	
Jan-23	56.47	20.69	9.96	18.39	58.52	21.43	10.32	19.05	
Feb-23	57.66	21.37	11.28	19.41	60.19	22.87	11.36	20.44	
Mar-23	59.67	20.03	8.56	22.68	64.89	25.86	12.04	23.94	
	•		•	•	•	*	-		
		AQ-9 (Un	it - μg/m3)			AQ-10 (Ur	nit - µg/m3)		
Month	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
Oct-22	46.8	20.1	11.4	18.1	47.5	19.2	10.5	17.1	
Nov-22	47.9	18.39	9.22	16.09	46.22	17.86	8.95	15.62	
Dec-22	53.2	20.1	9.3	17.2	50.5	19	8.9	16.3	
Jan-23	53.9	19.8	9.5	17.6	51.5	18.8	9.1	16.8	
Feb-23	58.08	21.15	11.86	19.33	57.45	22.94	8.37	19.06	
Mar-23	64.09	26.42	12.01	25.41	67.48	27.97	12.1	26.62	
				,	,	1			
Month		AQ-11 (Uı	nit - μg/m3)			AQ-12 (Ur	nit - µg/m3)		
MONUT	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
Oct-22	52.19	21.07	10.78	18	52.68	21.27	10.78	17.66	
Nov-22	44.9	17.3	8.7	15.2	48.5	18.7	9.4	16.4	
1101 22	52.3	19.7	9.2	16.9	49.1	18.5	8.6	15.9	
Dec-22	52.5								
	50.3	18.4	8.9	16.9	52.4	19.2	9.2	17.1	
Dec-22			8.9 10.95	16.9 18.74	52.4 62.83	19.2 25.2	9.2 14.93	17.1 18.7	

Tolerance limit: PM10: 100 μ g/m³, PM2.5: 60 μ g/m³, NO₂: 80 μ g/m³, SO₂: 80 μ g/m³ AAQ1: Mr.Murugesan - Pottaneri, AAQ2:Mr. Gopal - Malamannor, AAQ3:Mr.Surendran - Kavundanoor,

AAQ4:Mr.Manivasagam - Soliyur, AAQ5:New Guest House - Township, AAQ6: Mr.Sellappan - Pudur panakadu,

			IV.	. Analysis o	f Ambient A	ir Quality M	onitoring re	esults				
					PM ₁₀	in μg/m³						
Location	AQ-1	AQ-2	AQ-3	AQ-4	AQ-5	AQ-6	AQ-7	AQ-8	AQ-9	AQ-10	AQ-11	AQ-12
Minimum	49.90	46.60	51.30	49.70	47.19	49.44	48.90	49.20	46.80	46.22	44.90	48.50
Maximum	67.74	80.94	62.48	61.19	63.07	63.25	59.67	64.89	64.09	67.48	64.72	64.48
Average	54.55	58.82	54.50	52.86	53.37	54.83	54.41	55.94	54.00	53.44	52.87	55.00
Standard deviation	6.56	12.56	4.18	4.43	5.39	4.88	4.17	6.19	6.45	7.91	6.50	6.93
98 th Percentile	66.27	79.41	61.76	60.52	62.27	62.66	59.47	64.42	63.49	66.48	63.53	64.32
					PM _{2.5}	in µg/m³						
Location	AQ1	AQ-2	AQ-3	AQ-4	AQ-5	AQ-6	AQ-7	AQ-8	AQ-9	AQ-10	AQ-11	AQ-12
Minimum	18.28	18.66	18.80	18.80	19.20	19.80	19.27	18.56	18.39	17.86	17.30	18.50
Maximum	27.86	26.21	25.60	22.90	24.62	26.08	21.80	25.86	26.42	27.97	25.81	25.20
Average	21.68	21.03	21.32	20.62	20.47	21.33	20.78	21.81	20.99	20.96	20.35	21.26
Standard deviation	3.41	2.74	2.40	1.67	2.10	2.38	0.97	2.51	2.80	3.85	2.97	3.02
98 th Percentile	27.36	25.76	25.27	22.83	24.21	25.57	21.77	25.56	25.89	27.47	25.34	25.15
					SO ₂ i	in µg/m³						
Location	AQ-1	AQ-2	AQ-3	AQ-4	AQ-5	AQ-6	AQ-7	AQ-8	AQ-9	AQ-10	AQ-11	AQ-12
Minimum	8.80	8.93	9.10	8.80	9.00	9.30	8.56	8.64	9.22	8.37	8.70	8.60
Maximum	11.36	11.32	23.07	14.80	10.70	10.70	14.30	12.04	12.01	12.10	10.95	14.93
Average	10.10	10.20	14.44	10.39	9.96	9.97	10.66	10.72	10.55	9.65	9.68	10.56
Standard deviation	1.10	1.04	5.75	2.27	0.68	0.59	2.07	1.30	1.34	1.39	0.96	2.29
98 th Percentile	11.32	11.29	22.64	14.36	10.68	10.68	14.00	12.03	12.00	11.94	10.93	14.52
					NO ₂	in µg/m³						
Location	AQ-1	AQ-2	AQ-3	AQ-4	AQ-5	AQ-6	AQ-7	AQ-8	AQ-9	AQ-10	AQ-11	AQ-12
Minimum	16.25	16.26	16.70	16.20	16.50	17.10	16.48	15.88	16.09	15.62	15.20	15.90
Maximum	23.47	23.51	23.07	22.71	23.92	25.93	22.68	23.94	25.41	26.62	54.98	26.28
Average	18.44	18.42	19.24	19.00	18.68	20.15	19.47	19.15	18.96	18.58	23.45	18.67
Standard deviation	2.60	2.65	2.84	2.81	2.81	3.61	2.33	2.82	3.34	4.10	15.49	3.85
98 th Percentile	22.96	22.99	23.01	22.66	23.51	25.66	22.58	23.59	24.80	25.86	51.36	25.52

Tolerance limit: PM10: 100 μg/m³, PM2.5: 60 μg/m³, NO2: 80 μg/m3, SO₂: 80 μg/m³

AAQ1: Mr.Murugesan - Pottaneri, AAQ2:Mr. Gopal - Malamannor, AAQ3:Mr.Surendran -Kavundanoor, AAQ4:Mr.Manivasagam - Soliyur, AAQ5:New Guest House - Township, AAQ6: Mr.Sellappan – Pudur panakadu, AAQ7:Mr.Gandhi – Kuttapatti Pudur, AAQ8:Mr.Santhanam - Ervadi, AAQ9:Mr. Arunasalam - Ervadi, AAQ10:Mr.Thangavel – Amarathan Kadu, AAQ11:Mr. Mahalingam – Kattuvalavu, Pottaneri, AAQ12:Mr. Venkatesan – Pottaneri.

The results are within the norms prescribed by CPCB.

ANNEXURE 5

ONLINE EFFLUENT MONITORING REPORT AND GROUND WATER QUALITY MANUAL MONITORING REPORT OF TNPCB & NABL ACCREDITED LABORATORY

Annexure 5

Online effluent monitoring report and effluent & ground water quality manual monitoring report of NABL accredited laboratory

I.Online effluent monitoring report

S.No	Description	UoM	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	Effluent Inlet flow	m ³	66255	50356	69221	86873	63176	85363
2	Treated effluent water reuse in process	m ³	73010	62127	72595	72616	67072	79219
3	ETP outlet discharge flow	m ³	0	0	0	0	0	0

Note; Consented Trade efflunet generation 2935 KLD

0.11-	P		trade effluent of				J 00	F-1- 00	M 00
S.No	Parameter	Unit	Limit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	_P H @ 25°C		5.5 to 9.0	6.52	6.48	6.82	6.56	6.94	6.81
2	Total Suspended solids	Hazen	100	7	8	6	5.9	13	12
3	Total Dissolved solids (Inorganic)	-	2100	1214	1321	1410	1436	1894	1650
4	Chloride as Cl	°C	1000	325	339	351	345	468	488
5	Sulphate as SO ₄		1000	229	232	244	241	195.47	201.45
6	Oil & Grease	mg/l	10	BDL(D.L:4.0)	BDL(D.L:4.0)	BDL(D.L:4.0)	BDL(D.L:4.0)	BLQ[LOQ-2.0]	BLQ[LOQ-2.0]
7	BOD @ 27°C for 3 Days	mg/l	30	8.4	8.1	7.6	7.1	7.08	6.02
8	COD	mg/l	250	10	11	13	12	28.25	32.35
9	Ammonical Nitrogen as N	mg/l	50	5	5.2	6	7	1.47	0.99
10	Total kjeldahl Nitrogen as N	mg/l	100	6.25	6.39	5.84	5.45	=	=
11	Fluoride as F	mg/l	2	0.35	0.41	0.44	0.4	-	-
12	Phenolic compounds as C ₆ H ₅ OH	mg/l	1	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
13	Percent Sodium	mg/l		36	39	35	31	1	-
14	Cyanide as CN	mg/l	0.2	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BLQ[LOQ-0.1]	BLQ[LOQ-0.1]
15	Free ammonia as NH ₃	mg/l	5	0.32	0.48	0.53	0.45	-	-
16	Boron as B	mg/l	2	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	-	-
17	Hexavalent Chromium (Cr ⁶⁺)	mg/l	0.1	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	-	_
18	Free Residul Chlorine	mg/l	1.0	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	_	_
19	Residual Sodium Carbonate	mg/l		1.26	1.34	1.88	1.75	=	=
20	Total Chromium as Cr	mg/l	2	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	-	-
21	Copper as Cu	mg/l	3	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	-	_
22	Zinc as Zn	%	5.0	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	-	_
23	Lead as Pb	mg/l	0.1	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	_	_
24	Nickel as Ni	mg/l	3.0	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	_	_
25	Temperature	mg/l	ShallNotexceed5°Cab ovethereceivingwatert emperature	33	37	32	33	-	-
26	Particle size of suspended solids		PassesThrough850μl. S.Sieve			PassesTh	rough850µI.S.Sieve	9	
27	Arsenic as As	mg/l	0.2	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	-	-
28	Mercury as Hg	mg/l	0.01	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	-	=
29	Selenium as Se	mg/l	0.05	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	=	=
30	phosphate as PO4	mg/l	5.0	1.58	1.47	1.28	1.21	-	-
31	Sulphide as S	mg/l	2.0	BDL(D.L:1)	BDL(D.L:1)	BDL(D.L:1)	BDL(D.L:1)	-	=
32	Pesticides	mg/l		Nil	Nil	Nil	Nil	_	_
33	Cadmium as Cd	mg/l	2	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	-	_
34	Feacal Coliform MPN/100ml	mg/l		Absence	Absence	Absence	Absence	_	-
35	Total Hardness as CaCO3	mg/l		171	184	172	168	-	-
36	Total Alkalinity as CaCO3	mg/l		126	130	141	143	-	=
37	Turbudity	NTU		14	15	18	19	_	_
38	Total iron as Fe	mg/l	3	0.58	0.68	0.61	0.58	_	_
39	Barium as Ba	mg/l		BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	=	_
	Sodium Adsorption Ratio (vm/l	· ·		1.85	1.78	1.24	1.29		
-,0					0	2.27	20	=	-

III. Treated trade effluent of CPPII-Cooling tower water by NABL accredited laboratory

			TNPCB Tolerance	Oc	t-22	No	v-22	De	c-22	Jar	1-23	Fel	o-23	Ма	r-23
S.No	Parameter	Unit	TNPCB Tolerance Limit	Trade ffluent-1 unit 1&2 2x30MW	Trade ffluent-2 unit III 2x30MW	Trade ffluent-1 unit 1&2 2x30MW	Trade ffluent-2 unit III 2x30MW	Trade ffluent-1 unit 1&2 2x30MW	Trade ffluent-2 unit III 2x30MW	Trade ffluent-1 unit 1&2 2x30MW	Trade ffluent-2 unit III 2x30MW	Trade ffluent-1 unit 1&2 2x30MW	Trade ffluent-2 unit III 2x30MW	Trade ffluent-1 unit 1&2 2x30MW	Trade ffluent-2 unit III 2x30MW
1	_P H @ 25°C		5.5 - 9.0	6.52	7.16	6.63	7.26	6.88	7.03	6.45	7.16	7.21	7.58	6.89	6.81
2	Temperature	°C	Shall not exceed 5 °C above the receiving water temperature	36.7	34.3	35.3	35.4	32.4	33.4	31.3	32.4	27	27	27	27
3	Particle size of suspended solids		pass 850 u I.S Sieve	PASSES THROUGH 850	PASSES THROUGH 850	Test Pass	Test Pass	Test pass	Test Pass						
4	Total Suspended solids	mg/l	100	59	39	54	35	48	41	45	42	16	18	6	6
5	Total Dissolved solids (Inorganic)	mg/l	2100	1698	1584	1594	1487	1438	1564	1412	1557	1423	1324	1879	1692
6	Chloride as CI	mg/l	1000	352	447	345	436	367	454	361	488	391.16	352.8	459.86	344.89
7	Sulphate as SO ₄	mg/l	1000	571	562	563	551	541	573	535	570	104.31	109.5	146.27	107.14
8	Oil & Grease	mg/l	10	BDL(D.L:1.0)	BDL(D.L:1.0)	BDL(D.L:1.0)	BDL(D.L:1.0)	BDL(D.L:1.0)	BDL(D.L:1.0)	BDL(D.L:1.0)	BDL(D.L:1.0)	BLQ[LOQ-2.0]	BLQ[LOQ-2.0]	BLQ[LOQ-2.0]	BLQ[LOQ-2.0]
9	BOD @ 27°C for 3 Days	mg/l	30	11	BDL(DL:2.0)	12	BDL(DL:2.0)	10	BDL(DL:2.0)	9	BDL(DL:2.0)	6.07	8.09	8.03	8.03
10	COD	mg/l	250	44	BDL(DL:4.0)	46	BDL(DL:4.0)	53	BDL(DL:4.0)	51	BDL(DL:4.0)	20.18	32.29	32.35	28.31
11	Ammonical Nitrogen as N	mg/l	50	5.9	3.1	5.7	3.3	6.4	3.7	6.6	3.6	0.58	0.68	0.58	0.62
12	Total kjeldahl Nitrogen as N	mg/l	100	8.2	6.5	8	6.8	7.1	5.4	7.9	5.1	8	8.57	8.16	7.6
13	Fluoride as F	mg/l	2.0 (DL: 0.1)	BDL(D.L:0.1)	0.19	BDL(D.L:0.1)	0.2	BDL(D.L:0.1)	0.26	BDL(D.L:0.1)	0.42	0.12	0.34	0.49	0.42
14	Phenolic compounds as C ₆ H ₅ OH	mg/l	1.0 (DL: 0.01)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
15	Percent Sodium	%		52.4	56.7	50.1	54.2	43.5	58.7	42.1	55.1	32	36.12	36.19	36.19
16	Cyanide as CN	mg/l	0.2 (DL: 0.01)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BLQ[LOQ-0.1]	BLQ[LOQ-0.1]	BLQ[LOQ-0.1]	BLQ[LOQ-0.001]
17	Free ammonia as NH ₃	mg/l	5.0	0.61	0.65	0.59	0.61	0.72	0.49	0.56	0.47	0.78	0.83	0.76	0.76
18	Boron as B	mg/l	2.0 (DL: 0.1)	BDL(DL:0.1)	BDL(D.L:0.1)	BDL(DL:0.1)	BDL(D.L:0.1)	BDL(DL:0.1)	BDL(D.L:0.1)	BDL(DL:0.1)	BDL(D.L:0.1)	0.14	0.32	0.31	0.35
19	Hexavalent Chromium (Cr ⁶⁺)	mg/l	0.1 (DL: 0.03)	BDL(D.L:0.01)	BDL(D.L:0.05)	BDL(D.L:0.01)	BDL(D.L:0.05)	BDL(D.L:0.01)	BDL(D.L:0.05)	BDL(D.L:0.01)	BDL(D.L:0.05)	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
20	Free Residual chlorine	mg/l	1	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
21	Residual Sodium Carbonate	mg/l		1.77	1.52	1.74	1.47	1.38	1.58	1.42	1.43	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]
22	Total Chromium as Cr	mg/l	2.0 (DL: 0.03)	BDL(D.L:0.005)	BDL(D.L:0.01)	BDL(D.L:0.005)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
23	Copper as Cu	mg/l	3.0 (DL: 0.01)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
24	Zinc as Zn	mg/l	1.0 (DL: 0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	0.34	0.6	0.47	0.51
25	Lead as Pb	mg/l	0.1 (DL: 0.01)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
26	Nickel as Ni	mg/l	3.0 (DL: 0.01)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
27	Arsenic as As	mg/l	0.2 (DL: 0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
28	Mercury as Hg	mg/l	0.01 (DL: 0.001)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BDL(D.L:0.005)	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
29	Phosphate as PO4	mg/l	5	0.26	0.27	0.23	0.22	0.28	0.26	0.32	0.32	=	=	-	_
30	Sulphide as S	mg/l	2.0 (DL: 0.5)	BDL(D.L:1.0)	BDL(D.L:0.05)	BDL(D.L:1.0)	BDL(D.L:0.05)	BDL(D.L:1.0)	BDL(D.L:0.05)	BDL(D.L:1.0)	BDL(D.L:0.05)	BLQ[LOQ-0.5]	BLQ[LOQ-0.5	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]
31	Cadmium as Cd	mg/l	2.0 (DL : 0.001)	BDL(D.L:0.005)	BDL(D.L:0.001)	BDL(D.L:0.005)	BDL(D.L:0.001)	BDL(D.L:0.005)	BDL(D.L:0.001)	BDL(D.L:0.005)	BDL(D.L:0.001)	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
32	Total Hardaness as CaCO3	mg/l		353	358	348	347	364	352	369	356	-	-	-	-
33	Total Alkalinity as Caco3	mg/l		100	110	101	104	127	96	130	92	-	-	-	-

III. Treated trade effluent of Steel Guard bond water by NABL accredited laboratory

S.No	Parameter	Unit	TNPCB Tolerance Limit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	_P H @ 25°C		5.5 - 9.0	6.52	6.48	6.82	6.56	6.84	6.86
2	Temperature	°C	Shall not exceed 5 °C above the receiving water temperature	33	37	32	33	-	-
3	Particle size of suspended solids		Shall pass 850 u I.S Sieve	PassesThrough850µI.S .Sieve	PassesThrough850µI.S .Sieve	PassesThrough850µI.S .Sieve	PassesThrough850μI.S .Sieve	-	-
4	Total Suspended solids	mg/l	100	7	8	6	5.9	16	6
5	Total Dissolved solids (Inorganic)	mg/l	2100	1214	1321	1410	1436	1892	1958
6	Chloride as Cl	mg/l	1000	325	339	351	345	458.26	599.81
7	Sulphate as SO ₄	mg/l	1000	229	232	244	241	192.41	198.52
8	Oil & Grease	mg/l	30	BDL(D.L:4.0)	BDL(D.L:4.0)	BDL(D.L:4.0)	BDL(D.L:4.0)	BLQ[LOQ-2.0]	BLQ[LOQ-2.0]
9	BOD @ 27°C for 3 Days	mg/l	10 (DL: 1.0)	8.4	8.1	7.6	7.1	8.09	7.02
10	COD	mg/l	250	10	11	13	12	32.29	28.31
11	Ammonical Nitrogen as N	mg/l	0.2 (DL: 0.005)	5	5.2	6.2	6.8	0.98	1.02
12	Total kjeldahl Nitrogen as N	mg/l	0.01 (DL: 0.001)	6.25	6.39	5.84	5.45	_	_
13	Fluoride as F	mg/l	0.1 (DL: 0.01)	0.35	0.41	0.44	0.4	_	_
14	Phenolic compounds as C ₆ H ₅ OH	mg/l	1.0 (DL: 0.005)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
15	Percent Sodium	%	3.0 (DL: 0.01)	36	39	35	31	_	_
16	Cyanide as CN	mg/l	2.0 (DL: 0.005)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BLQ[LOQ-0.1]	BLQ[LOQ-0.1]
17	Free ammonia as NH ₃	mg/l	3.0 (DL: 0.01)	0.32	0.48	0.53	0.45	_	_
18	Boron as B	mg/l	0.2 (DL: 0.01)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	_	_
19	Hexavalent Chromium (Cr ⁶⁺)	mg/l	1.0 (DL: 0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	_	_
20	Free Residual chlorine	%		BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	BDL(D.L:0.1)	_	_
21	Residual Sodium Carbonate	mg/l		1.26	1.34	1.88	1.75	_	_
22	Total Chromium as Cr	mg/l	2.0 (DL: 0.5)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	_	_
23	Copper as Cu	mg/l	2.0 (DL: 0.1)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	_	_
24	Zinc as Zn	mg/l	2.0 (DL: 0.03)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	_	_
25	Lead as Pb	mg/l	0.1 (DL: 0.03)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	_	_
26	Nickel as Ni	mg/l	2.0 (DL: 0.1)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	_	_
27	Arsenic as As	mg/l	5.0	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	BDL(D.L:0.01)	_	_
28	Mercury as Hg	mg/l	1.0 (DL: 0.1)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	_	_
29	Phosphate as PO4	mg/l	50	1.58	1.47	1.28	1.21	_	_
30	Sulphide as S	mg/l	100	BDL(D.L:1)	BDL(D.L:1)	BDL(D.L:1)	BDL(D.L:1)	_	_
31	Cadmium as Cd	mg/l	2	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	BDL(D.L:0.001)	_	_
32	Total Hardaness as CaCO3	mg/l		171	184	172	168	_	_
33	Total Alkalinity as Caco3	mg/l		126	130	141	143	_	_

			IV. Result of ana	alysis of steel tre	eated trade effluen	t by TNPCB			
S.No	Parameter	Unit	TNPCB Tolerance Limit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	pH @ 25°C	Number	5.5-9.0	7.71	8.38	7.44	7.96	8.33	8.1
2	TSS at 103°C - 105°C	mg/l	shall not exceed 5°C above the receiving water temperature	20	4	8	4	4	12
3	Total Dissolved Solids at 180°C	mg/l	2100	1396	1076	1492	1276	1172	1456
4	Chloride as Cl	mg/l	1000	460	350	450	460	280	600
5	Sulphates as SO4	mg/l	1000	461	246	211	296	43	178
6	Oil & Grease	mg/l	10	<3	<3	<3	<3	<3	<3
7	BOD (at 27°C for 3 days)	mg/l	30	7.2	14.7	11	13	7	5
8	COD	mg/l	250	9.6	48	56	40	56	40
9	Phenolic compounds	mg/l	1	_	_	_	_	_	_
10	Cyanide	mg/l	0.2	_	_	_	_	_	_
11	Ammonical Nitrogen as NH ₃ -N	mg/l	50	8.96	3.36	2.24	2.8	1.68	2.24
12	SAR	mg/l	00	37.2	6.5	4.2	3.72	3.7	
	I -		IV Posult of anal		eated trade efflue		3.72	3.7	_
	I				1	,		T	I
S.No	Parameter	Unit	TNPCB Tolerance Limit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	pH @ 25°C	Number	5.5-9.0	7.36	7.14	7.34	7.68	7.36	7.74
2	TSS at 103°C - 105°C	mg/l	shall not exceed 5°C above the receiving water temperature	32	8	8	4	8	8
3	Total Dissolved Solids at 180°C	mg/l	2100	1788	1696	1776	1332	1524	1468
4	Chloride as Cl	mg/l	1000	450	430	380	370	410	450
5	Sulphates as SO4	mg/l	1000	537	444	327	421	269	265
6	Oil & Grease	mg/l	10	< 3	<3	<3	4	5	3
7	BOD (at 27°C for 3 days)	mg/l	30	6	<2	4.2	<2	6	<2
8	COD	mg/l	250	64	56	48	48	72	48
9	Phenolic compounds	mg/l	1	< 005	_	_	_	_	_
10	Cyanide	mg/l	0.2	_	_	_	_	_	_
11	Ammonical Nitrogen as NH ₃ -N	mg/l	50		1.12	1.68	1.12	1.68	1.12
	SAR	mg/l	1 30	7.05	4.60	4.20	3.12	4.1	

V.Result of analysis of ground water by NABL accredited laboratory

					Oct-23		No	v-23	Dec	:-23	Ja	n-23
S.No	Parameter	Unit	Permissable Limits as for IS : 10500: 1991 R.2012	Mr. Govintharaj, Bore well Water, Kuttappattipudur	Parry Nagar Govt bore well	Tmt Kaliyammal teacher Open Well Pottaneri	Govt bore well moorthipatti	Open well mr.Rajamani / kuttapattipudur	open well mr.vellaiyan moorthippatti	Govt hand pump Ervadi	Govt bore well kavadanur	Open well mr.Bala pudurpankadu
1	_P H @ 25°C		5.5 - 9.0	7.69	7.48	7.59	7.78	7.62	7.12	7.85	7.32	7.79
2	Total Suspended solids	mg/l	100	2.1	2.6	2.4	3	3	2	3	2.5	2.6
3	Total Dissolved solids (Inorganic)	mg/l	2100	1589	1745	1694	1487	1658	1534	1982	1554	1915
4	Chloride as CI	mg/l	1000	191	163	178	187	159	324	351	316	347
5	Sulphate as SO ₄		1000	751	708	715	735	689	637	611	641	608
6	Oil & Grease	mg/l	10	BDL (DL : 4.0)	BDL (DL : 4.0)	BDL (DL : 4.0)	BDL (DL : 4.0)	BDL (DL : 4.0)	BDL (DL : 4.0)	BDL (DL : 4.0)	BDL (DL : 4.0)	BDL (DL : 4.0)
	BOD @ 27°C for 3 Days	mg/l	30	BDL (DL : 2.0)	BDL (DL : 2.0)	BDL (DL : 2.0)	BDL (DL : 2.0)	BDL (DL : 2.0)	BDL (DL : 2.0)	BDL (DL : 2.0)	BDL (DL : 2.0)	BDL (DL : 2.0)
8	,				-				10		11	
	COD	mg/l	250	BDL(DL:4.0)	BDL(DL:4.0)	BDL(DL:4.0)	BDL(DL:4.0)	BDL(DL:4.0)		13		14
	Ammonical Nitrogen as N	mg/l	50	BDL(DL:1)	BDL(DL:1)	BDL(DL:1)	BDL(DL:1)	BDL(DL:1)	1.89	1.24	1.65	1.34
10	Total kjeldahl Nitrogen as N	mg/l	100	BDL(DL:1)	BDL(DL:1)	BDL(DL:1)	BDL(DL:1)	BDL(DL:1)	2.31	1.98	2.21	1.91
11	Fluoride as F	mg/l	2.0 (DL: 0.1)	0.9	0.63	0.75	0.89	0.59	1.21	0.84	1.15	0.78
12	Phenolic compounds as C ₆ H ₅ OH	mg/l	1.0 (DL: 0.01)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)	BDL (DL: 0.001)
13	Percent Sodium	%	-	50.9	48.3	52.3	49.2	45.1	37.8	29.5	35.2	28.3
14	Cyanide as CN	mg/l	0.2 (DL: 0.01)	BDL(DL: 0.01)	BDL(DL: 0.01)	BDL(DL: 0.01)	BDL(DL: 0.01)	BDL(DL: 0.01)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)	BDL(D.L:0.05)
15	Free ammonia as NH ₃	mg/l	5.0	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	0.41	0.35	0.4	0.37
16	Boron as B	mg/l	2.0 (DL : 0.1)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
17	Hexavalent Chromium (Cr ⁶⁺)	mg/l	0.1 (DL: 0.03)	BDL (DL : 0.01)	BDL (DL: 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL: 0.01)	BDL (DL : 0.01)	BDL (DL: 0.01)	BDL (DL: 0.01)	BDL (DL : 0.01)
	Free Residul Chlorine	mg/l	1	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)	BDL (DL : 0.1)
19	Residual Sodium Carbonate		*	, ,	` '	` '	` ′		, , ,	, ,	, ,	, ,
		mg/l		BDL(DL:1.15)	BDL(DL:1.15)	BDL(DL:1.15)	BDL(DL:1.15)	BDL(DL:1.15)	BDL(DL:1.15)	BDL(DL:1.15)	BDL(DL:1.15)	BDL(DL:1.15)
20	Total Chromium as Cr	mg/l	2.0 (DL : 0.03)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
21	Copper as Cu	mg/l	3.0 (DL: 0.01)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
22	Zinc as Zn	mg/l	1.0 (DL: 0.005)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
23	Lead as Pb	mg/l	0.1 (DL: 0.01)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
24	Nickel as Ni	mg/l	3.0 (DL: 0.01)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
25	Temperature	С	Shall not exceed 5 °C above the receiving water temperature	27	28	28	28	29	30	30	29	29
26	Particle size of suspended solids		pass 850 u I.S Sieve	shall pass 850	shall pass 850	shall pass 850	shall pass 850	shall pass 850	shall pass 850	shall pass 850	shall pass 850	shall pass 850
27	Arsenic as As	mg/l	0.2 (DL: 0.005)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
28	Mercury as Hg	mg/l	0.01 (DL: 0.001)	BDL(LOQ:0.0005)	BDL (LOQ:0.0005)	BDL (LOQ:0.0005)	BDL(LOQ:0.0005)	BDL (LOQ:0.0005)	BDL(LOQ:0.0005)	BDL (LOQ:0.0005)	BDL(LOQ:0.0005)	BDL (LOQ:0.0005)
29	Selenium as Se	mg/l	1.0	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)	BDL(LOQ:0.002)
_	phosphate as PO4	mg/l	5	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)	BDL (DL: 0.01)	BDL (DL : 0.01)	BDL (DL : 0.01)
31	Sulphide as S	mg/l	2.0 (DL: 0.5)	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil	BDL (DL : 0.04) Nil
32	Pesticides Cadmium as Cd	mg/l mg/l	2.0 (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)	BDL (DL : 0.001)
	Feacal Coliform MPN/100ml		2.0 (32 : 0.001)	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence	Absence
35	Total Hardness as CaCO3	mg/l		656	626	636	663	612	573	658	579	645
36	Total Alkalinity as CaCO3	mg/l		208	214	226	198	201	224	238	218	241
37	Turbudity	NTU		0.56	0.59	0.63	0.63	0.63	0.76	0.53	0.71	0.63
38	Total iron as Fe	mg/l		0.11	0.12	0.14	0.15	0.15	0.08	0.12	0.07	0.14
	Barium as Ba Sodium Adsorption Ratio (vmillimole/	mg/l		BDL (LOQ:0.002) 2.9	BDL (DL : 0.1) 2.1	BDL (DL : 0.1) 2.4	BDL (LOQ:0.002) 2.4	BDL (DL : 0.1) 2.6	BDL (DL : 0.1) 1.91	BDL (DL : 0.1) 2.15	BDL (DL : 0.1) 1.85	BDL (DL : 0.1) 2.07

Procession Description Control of St. 1988 (1) <						Feb	23			Mar-23		
2 Clar Clar Clar April	S.No	Parameter	Unit	as for IS: 10500: 1991	GOVT. BORE WELL ERVADI		WELL KOTTAPPATTI				KALIYAMMAL TEACHER	VENKATESAN
1 Table 1.0 Ageodate Description Ageodate Ageoda	1	Colour	Hazen	15	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]	BLQ[LOQ-1.0]
March Mar	2	Odour	-	Unobjectionable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
6 baselessed size reg. Column Colu	3	Taste	-	Agreeable	Disagreeable	Disagreeable	Agreeable	Agreeable	Disagreeable	Disagreeable	Disagreeable	Agreeable
0 1920 Co. 11 Gaz Controlled (mile) 11 Gaz Controlled	4	Turbidity	NTU	5	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]	BLQ[LOQ-0.5]
7 Seminacodoctory nSo. Compa 1.00	5	Total Dissolved Solids	mg/L	6.58.5	2753	2788	1745	1640	3576	3564	1305	1767
δ Asiaty rgl 200 Common Gall Common	6	pH @25°C	-	1000	7.96	7.64	7.85	7.49	7.21	7.38	7.39	8.17
θ Consistence Control Mod. Control	7	Electrical Conductivity	mS/cm	600	3.49	3.56	2.23	2.2	5.26	5.47	1748	2.65
1	8	Alkalinity	mg/L	200	479.4	464.1	637.5	668.1	522.6	768.83	638.17	482.4
1 Selection	9	TotalHardnessasCaCO3	mg/L	100	1320.8	1392.22	811.3	791.26	2914.5	1567.8	874.35	924.6
	10	TotalSuspenedSolid	mg/L	2000	BLQ[LOQ-5.0]	BLQ[LOQ-5.0]	BLQ[LOQ-5.0]	BLQ[LOQ-5.0]	BLQ[LOQ-5.0]	BLQ[LOQ-5.0]	BLQ[LOQ-5.0]	BLQ[LOQ-5.0]
1	11	CalciumasCa	mg/L	400	288.58	296.59	188.38	168.34	601.2	320.64	180.36	192.38
1 1 1 1 1 1 1 1 1 1	12	MagnesiumasMg	mg/L	1.50	147.77	160.33	84.07	91.26	343.85	186.65	103.15	108.08
15 Imagenisessish mgl 45 περίτοραση <	13	Ironas Fe	mg/L	0.3	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
1	14	CopperasCu	mg/L	0.3	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
1 1 1 1 1 1 1 1 1 1	15	ManganeseasMn	mg/L	45	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
National N	16	SulphateasSO4	mg/L	1.5	297.16	324.17	154.28	235.47	526.3	347.25	39.42	181.63
Puncifeasi	17	ChlorideasCl	mg/L	0.002	773.63	783.48	482.9	271.02	1649.49	979.7	124.96	539.83
Prioric Compounds as CRHSCH mg/L 0.01 8.10,100,00m] 8.10,100,00m] 8.10,110,00m]	18	NitrateasNO3	mg/L	0.001	2.74	2.84	2.57	2.64	3.22	3.08	1.48	2.11
2 2 2 2 2 2 2 2 2 2	19	FluorideasF	mg/L	0.0	0.56	0.58	0.51	0.47	0.67	0.62	0.11	0.37
Part	20	PhenolicCompoundsasC6H5OH	mg/L	0.01	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
CyanideasCN mg/L 0.01 BLQILOQ-0001 BLQIL	21	ZincasZn	mg/L	0.05	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
24 CadmiumasCd mg/L 15.0 BLQ[LOQ+001] BLQ[LOQ+0	22	ArsenicasAs	mg/L	0.05	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
25 ChromiumasCr mg/L 0.05 BLQILOQ+001] B	23	CyanideasCN	mg/L	0.01	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.1]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
26 AluminumasAl mg/L 1.0 BLQILOQ+0011 BLQILOQ+00	24	CadmiumasCd	mg/L	15.0	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
SeleniumasSe mg/L 600.0 BLQ[LOQ-0.001] BLQ[LOQ-0.01] BLQ[LOQ-0.001] BLQ[LOQ-0.001] BLQ[LOQ-0.001] BLQ[LOQ-0	25	ChromiumasCr	mg/L	0.05	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
28 LeadasPb mg/L 0.20 BLQILOQ+0005] BLQILOQ+0005	26	AluminumasAl	mg/L	1.0	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
MercuryasHg	27	SeleniumasSe	mg/L	600.0	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]	BLQ[LOQ-0.001]
Some	28	LeadasPb	mg/L	0.20	BLQ[LOQ-0.005]	BLQ[LOQ-0.005]	BLQ[LOQ-0.005]	BLQ[LOQ-0.005]	BLQ[LOQ-0.005]	BLQ[LOQ-0.005]	BLQ[LOQ-0.005]	BLQ[LOQ-0.005]
FreeResidualChlorine mg/L 0.0 BLQ[LOQ±01] BLQ[LO	29	MercuryasHg	mg/L	1.0	BLQ[LOQ-0.0005]	BLQ[LOQ-0.0005]	BLQ[LOQ-0.0005]	BLQ[LOQ-0.0005]	BLQ[LOQ-0.0005]	BLQ[LOQ-0.0005]	BLQ[LOQ-0.0005]	BLQ[LOQ-0.0005]
32 MineralOil mg/L 0.1 BLQ[LOQ+001]	30	BoronasB	mg/L	0.5	0.44	0.46	0.39	0.42	0.46	0.49	0.37	0.29
33 HydrogensulfideasH2S mg/L 0.003 BLQ[LOQ-0.05] BLQ[LOQ-0	31	FreeResidualChlorine	mg/L	0.0	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
NickelasNi mg/L Absence BLQ[LOQ+0.01]	32	MineralOil	mg/L	0.1	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.001]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
35 TotalAmmonia mg/L 600.00 BLQ[LOQ-0.25] BLQ[LOQ-0.25] BLQ[LOQ-0.25] BLQ[LOQ-0.25] BLQ[LOQ-0.25] BLQ[LOQ-0.25] BLQ[LOQ-0.25] BLQ[LOQ-0.25]	33	HydrogensulfideasH2S	mg/L	0.003	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]	BLQ[LOQ-0.05]
	34	NickelasNi	mg/L	Absence	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]	BLQ[LOQ-0.01]
36 Escherichiacoli MPN/100ml 200 17 14 2 11 2 2 2 2 2 2	35	TotalAmmonia	mg/L	600.00	BLQ[LOQ-0.25]	BLQ[LOQ-0.25]	BLQ[LOQ-0.25]	BLQ[LOQ-0.25]	BLQ[LOQ-0.25]	BLQ[LOQ-0.25]	BLQ[LOQ-0.25]	BLQ[LOQ-0.25]
	36	Escherichiacoli I	MPN/100ml	200	17	14	<2	11	<2	<2	<2	<2

VI. Result of analysis of ground water by TNPCB

S.No	Parameter	Unit	OPEN WELL - Tmt.Kaliammal teacher , Pottaneri	GOVT. Bore well , Kavundanoor	Selam Bore Well Karapattipallam	BORE WELL Thiru Velliyan , Moorthipatti	GOVT BORE WELL -	OPEN WELL - Thiru .Venkatesan, Pottaneri
				<u> </u>	Dec-	•	<u>I</u>	<u> </u>
1	Turbidity	NTU	0.25	0.2	0.1	0.1	0.1	0.2
2	Colour	ml	<5	<5	<5	<5	<5	<5
3	Conductivity at 25° C	μmhos/cm						
4	pH at 25° C	Number	7.76	7.51	7.56	7.98	7.58	8.37
5	TSS at 25° C	mg/L	4	4	4	4	4	4
6	Total Dissolved Solids at 180° C	mg/L	2508	2564	1316	1288	1212	1352
7	Chloride as Cl	mg/L	600	825	420	340	360	320
8	Sulphate as SO4	mg/L	311	179	107	86	61	131
9	O&G	mg/L	<3	<3	<3	<3	<3	<3
10	BOD (at 27° C for 3 days	mg/L	5.4	<2	3	<2	<2	7
11	COD	mg/L	24	24	24	24	24	24
12	Mangnese	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
13	Ammonical Nitrogen as NH3 -N	mg/L	1.12	0.56	1.12	0.56	0.56	1.68
14	Total Kjeldhal Nitrogen	mg/L	3.36	2.24	3.36	2.24	2.24	5.04
15	Fluoride as F	mg/L	0.02	0.444	0.288	0.455	0.288	0.411
16	Ph Compounds	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
17	% Sodium	%	31.00	40.00	41.00	39.00	43.00	40.00
18	Total Hardness as CaCO3	mg/L	1290	970	520	560	530	750
19	Alkalinity CaCO3	mg/L	340	504	200	372	308	220
20	Phosphate as PO4	mg/L	0.555	0.787	0.555	2.129	0.35	0.37
21	Hexavalent Chromium	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
22	Iron Total as Fe	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
23	Total Nitrogen	mg/L						
24	SAR	mg/L	3.20	4.10	3.20	3.10	3.50	4.00
25	Total Chromium	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
26	Copper	mg/L	0.2188	0.6385	0.3273	0.3273	0.2732	<0.1
27	Zinc	mg/L	<0.03	<0.03	0.0362	<0.03	0.23	<0.03
28	Lead	mg/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
29	Cadmium	mg/L	<0.05	<0.05	<0.05	<0.05	0.0803	<0.05
30	Cyanide	mg/L	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
31	Nickel	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
32	Arsenic	mg/L						
33	Mercury	mg/L						
34	Ph. Alkalinity	mg/L	28.00	44.00	60.00	56.00	4.00	72.00
35	Nitrate Nitrogen as NO3	mg/L	1.336	10.48	4.585	2.047	4.695	10.395
36	Nitrite Nitrogen as NO2	mg/L	0.012	0.01	0.012	0.003	0.003	0.058
37	Calcium as Ca	mg/L	196.00	96.00	108.00	72.00	88.00	60.00
38	Magnesium as Mg	mg/L	194.00	177.00	61.00	92.00	75.00	146.00
39	Sodium as Na	mg/L	263.00	295.00	170.00	166.00	186.00	253.00
40	Potassium as K	mg/L	15.00	8.00	11.00	7.00	10.00	62.00
41	Free Ammonia	mg/L	0.011	0.005	0.011	0.005	0.005	0.017
42	Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.002	<0.002
43	Total Residule Chlorine	mg/L	<1	<1	<1	<1	<1	<1
44	Residule Sodium Carbonate	-	Negative	Negative	Negative	Negative	Negative	Negative

VI. Result of analysis of ground water by TNPCB

	1	1	VI. Result of analys	Is of ground wate	I by INFOB	ı		
S.No	Parameter	Unit	OPEN WELL - Thiru .Rajamani, Kuttapatti Pudur	GOVT. BORE WELL Kuttapatti Pudur	OPEN WELL - Thiru .Balan, Pudur Panankadu	GOVT BORE WELL, ERVADI	GOVT BORE WELL PARYNAGAR	
					Dec-22			
1	Turbidity	NTU	0.36	0.25	0.2	0.4	0.2	
2	Colour	ml	<5	<5	<5	<5	<5	
3	Conductivity at 25° C	μmhos/cm	4320	3420	3160	4960	3310	
4	pH at 25° C	Number	7.65	7.69	7.7	7.29	7.63	
5	TSS at 25° C	mg/L	4	4	4	4	4	
6	Total Dissolved Solids at 180° C	mg/L	2892	2280	2132	3504	2632	
7	Chloride as CI	mg/L	925	800	675	1150	775	
8	Sulphate as SO4	mg/L	523	142	185	229	180	
9	O&G	mg/L	৺	<3	<3	<3	<3	
10	BOD (at 27° C for 3 days	mg/L	5	4	<2	6	<2	
11	COD	mg/L	24	24	24	24	24	
12	Mangnese	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	
13	Ammonical Nitrogen as NH3 -N	mg/L	1.12	1.12	0.56	1.68	0.56	
14	Total Kjeldhal Nitrogen	mg/L	3.36	3.36	1.68	5.04	2.24	
15	Fluoride as F	mg/L	0.022	0.411	0.355	0.533	0.100	
16	Ph Compounds	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	
17	% Sodium	%	27.00	65.00	50.00	31.00	13.00	
18	Total Hardness as CaCO3	mg/L	1010	560	730	1640	1400	
19	Alkalinity CaCO3	mg/L	488	600	428	360	328	
20	Phosphate as PO4	mg/L	0.462	0.555	0.439	0.092	0.092	
21	Hexavalent Chromium	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	
22	Iron Total as Fe	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	
23	Total Nitrogen	mg/L						
24	SAR	mg/L	2.40	9.00	5.40	3.70	1.20	
25	Total Chromium	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	
26	Copper	mg/L	0.3086	0.9838	0.2161	0.2432	0.1522	
27	Zinc	mg/L	<0.03	0.10	0.0374	0.4059	<0.03	
28	Lead	mg/L	<0.3	<0.3	<0.3	<0.3	<0.3	
29	Cadmium	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	
30	Cyanide	mg/L	<0.08	<0.08	<0.08	<0.08	<0.08	
31	Nickel	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	
32	Arsenic	mg/L						
33	Mercury	mg/L						
34	Ph. Alkalinity	mg/L	44.00	56.00	32.00	4.00	40.00	
35	Nitrate Nitrogen as NO3	mg/L	6.383	10.460	2.173	10.459	10.490	
36	Nitrite Nitrogen as NO2	mg/L	0.050	0.003	0.243	0.073	0.003	
37	Calcium as Ca	mg/L	144.00	64.00	112.00	200.00	148.00	
38	Magnesium as Mg	mg/L	158.00	97.00	109.00	277.00	250.00	
39	Sodium as Na	mg/L	177.00	490.00	336.00	347.00	104.00	
40	Potassium as K	mg/L	35.00	10.00	5.00	25.00	53.00	
41	Free Ammonia	mg/L	0.011	0.011	0.005	0.017	0.005	
42	Boron	mg/L	<0.02	<0.02	<0.002	<0.002	<0.002	
43	Total Residule Chlorine	mg/L	<1	<1	<1	<1	<1	
44	Residule Sodium Carbonate	-	Negative	Negative	Negative	Negative	Negative	

ANNEXURE 6 TREATED SEWAGE QUALITY MONITORING REPORT OF TNPCB & NABL ACCREDITED LABORATORY

Annexure 6

Treated sewage quality monitoring report of TNPCB & NABL accredited laboratory for the period of OCT'22 to MAR '23

Result of analysis of treated sewage by TNPCB (Plant STP)

S.No	Parameter	Unit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	_P H @ 25°C	Number	7.73	7.57	7.52	7.56	7.97	7.82
2	TSS at 103°C - 105°C	mg/l	12	8	8	4	8	8
3	BOD (at 27°C for 3 days)	mg/l	4	<2	5	<2	5	4

Result of analysis of treated sewage by TNPCB (Township STP)

S.No	Parameter	Unit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	_P H @ 25°C	Number	7.58	7.44	7.61	7.63	7.69	7.86
2	TSS at 103°C - 105°C	mg/l	12	8	4	4	8	4
3	BOD (at 27°C for 3 days)	mg/l	4.2	<2	5.1	<2	6	<2

		Result of analysis	of treated sewage b	y NABL accredited la	aboratory (Plant STP)			
S.No	Parameter	Unit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	PH@25 C		7.38	7.52	7.82	7.36	7.86	7.34
2	Total suspended solids	mg/l	1.9	1.4	2.2	2.8	6	4.2
3	BOD at 27 C for 3 days	mg/l	8.9	8.7	9.3	9	7.08	8
4	COD	mg/l	10.8	9.6	10.1	10.3	32.29	16
5	Ammonical Nitrogen as N	mg/l	6.2	6.4	4.8	4.5	0.81	0.68
6	Total Kjeldhal Nitrogen as N	mg/l	22.4	21.5	22.5	21.8	7.14	7.8
7	Sodium Absorption Ratio	vmillimole/L	2.6	2.3	2.8	2.6	_	-
8	Fecal Coliform	MPN/100ml	25	23	19	18	50	48
9	Total Coliform	MPN/100ml	75	71	63	66	_	-
10	TotalDissolvedSolids	mg/L	_	_	_	_	713	756

		Result of analysis o	f treated sewage by	NABL accredited lab	oratory (Township S	ГР)		
S.No	Parameter	Unit	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
1	PH@25 C		7.32	7.51	7.35	7.56	7.21	6.73
2	Total suspended solids	mg/l	4.36	4.23	3.59	3.23	11	BLQ[LOQ-5.0]
3	BOD at 27 C for 3 days	mg/l	8.3	8.1	7.4	7.2	7.08	9.03
4	COD	mg/l	11.4	10.4	10.8	10.6	28.25	44.48
5	Ammonical Nitrogen as N	mg/l	1.9	1.7	1.24	1.45	0.79	0.94
6	Total Kjeldhal Nitrogen as N	mg/l	2.5	2.2	3.61	3.34	6.28	8.28
7	Sodium Absorption Ratio	vmillimole/L	3.3	3.6	3.1	3.4	_	_
8	Fecal Coliform	MPN/100ml	13.1	2.8	13.6	12.7	90	90
9	Total Coliform	MPN/100ml	35	31	39	37	_	_
10	TotalDissolvedSolids	mg/L	-	_	_	_	641	687

ANNEXURE 7 AMBIENT NOISE LEVEL MONITORING REPORT OF NABL ACCREDITED LABORATORY

Annexure 7 Ambient Noise level monitoring report of NABL accredited laboratory for the period of OCT'22 to MAR '23 I. Ambient Noise Monitoring results (OCT'22 to MAR '23) Day Time Noise Level in dB(A) S.No Location Oct-22 Nov-22 Maximum Minimum Average STD Deviation 1 Old Main Gate 64.4 63.2 64.4 63.2 63.8 0.8 2 Near Guest House 63.1 64.5 64.5 63.1 63.8 1.0 3 North Gate Area 71.7 71.3 70.9 71.7 70.9 0.6 4 Near ASP I & II 68.1 66.8 68.1 66.8 67.5 0.9 5 Temple Gate 70.6 69.1 70.6 69.1 69.9 1.1 6 Near New Reservoir 66.2 68.6 67.4 1.7 68.6 66.2 Near RS Gate 64 61.9 64.0 61.9 63.0 1.5 Near Raw Water Pump House 8 69.7 66.5 69.7 66.5 68.1 2.3 9 Near Railway Quarters 66.7 68.3 68.3 66.7 67.5 1.1 SE Corner of the Plant 10 69.4 67.8 69.4 67.8 68.6 1.1 11 Near Rail end 70.9 70.2 70.9 70.2 70.6 0.5 12 Wagon Tippler Area 62.7 64.3 64.3 62.7 63.5 1.1 13 Near karapatti pallam 69.2 68.8 69.2 68.8 69.0 0.3

				Night Time Nois	se Level in dB(A)	
S.No	Location	Oct-22	Nov-22	Maximum	Minimum	Average	STD Deviation
1	Main Gate	60.7	57.6	60.7	57.6	59.2	2.2
2	Near Guest House	63.4	59.2	63.4	59.2	61.3	3.0
3	Near ground Hopper area – BF II	61.2	61.8	61.8	61.2	61.5	0.4
4	Near ASP I & II	56.2	58.3	58.3	56.2	57.3	1.5
5	Temple Gate	54.9	57.4	57.4	54.9	56.2	1.8
6	Near New Reservoir	59.7	60.9	60.9	59.7	60.3	0.8
7	Near RS Gate	60.5	53.5	60.5	53.5	57.0	4.9
8	Near Raw Water Pump House	57.6	54.8	57.6	54.8	56.2	2.0
9	Near Railway Quarters	56	58.7	58.7	56.0	57.4	1.9
10	SE Corner of the Plant	58.6	55.3	58.6	55.3	57.0	2.3
11	Near Rail end	56.2	60.2	60.2	56.2	58.2	2.8
12	Wagon Tippler Area	61.8	57.6	61.8	57.6	59.7	3.0
13 13	Near karapatti pallam	59.5	59.5	59.5	59.5	59.5	0.0

Standard limit for Ambient noise level at Daytime is 75 dB (A), Standard limit for Ambient noise level at Nighttime is 70 dB (A). The ambient noise level monitoring results are within the CPCB norms.

Annexure -7

Ambient Noise level monitoring report of NABL accredited laboratory for the period of OCT'22 to MAR '23

I. Ambient Noise Monitoring results (OCT'22 to MAR '23)

					Day Time Noise	Level in dB(A)			
S.No	Location	Dec-22	Jan-23	Feb-23	Mar-23	Maximum	Minimum	Average	STD Deviation
1	New Land area JSW Boundary	64.6	63.2	68.3	63.2	68.3	63.2	64.8	2.4
2	Open field – Near thangamapuri stores, Malamanoor.	61.2	62.7	66.5	68.4	68.4	61.2	64.7	3.3
3	Nearby Mr.Chinnamuthu House, Malamanoor.	68.3	67.3	65.3	64.6	68.3	64.6	66.4	1.7
4	Near Madhayen Temple at Coconut Farm.	67.5	65.6	66.3	62.5	67.5	62.5	65.5	2.1
5	Eastern Gate of JSW.	70.1	69	67.9	60.6	70.1	60.6	66.9	4.3
6	Reservoir Premises.	66.8	67.7	66.3	63.9	67.7	63.9	66.2	1.6
7	Executive Staff Quarters, JSW.	63.4	65.2	65.7	68.3	68.3	63.4	65.7	2.0
8	Nearby Railway Crossing kuttappatti village.	67.8	66.9	66.8	59.8	67.8	59.8	65.3	3.7
9	Residential Area Ervadi Village.	65.9	67.3	66.7	62.3	67.3	62.3	65.6	2.2
10	At Coconut Farm, Nearby Railway crossing.	64.2	65.1	67.3	68.4	68.4	64.2	66.3	1.9
11	At Parrynagar Residential Area.	71.6	70.8	68.3	61.2	71.6	61.2	68.0	4.7
12	Over Head Tank	69.3	70.5	65.3	67.2	70.5	65.3	68.1	2.3
13	Opp. To Old Main Gate, Open Agricultural field.	65.4	66.4	68.9	69.5	69.5	65.4	67.6	2.0
14	Guest House Premises.	66.8	67.8	67.3	64.3	67.8	64.3	66.6	1.6
15	Open Field, Pottaneri Village.	64.1	65.1	66.8	67.8	67.8	64.1	66.0	1.7
16	Raw Material Storage Yard (Iron Ore).	72.7	71.9	66.8	62.3	72.7	62.3	68.4	4.8
17	In front of Occupational in Health Centre.	67.5	68.2	66.7	65.8	68.2	65.8	67.1	1.0
18	Near Pickling & Phosphating Plant 2 KLD ETP	69.2	70.3	67.8	63.2	70.3	63.2	67.6	3.1

				N	ight Time Nois	E Level in dB(A)			
S.No	Location	Dec-22	Jan-23	Feb-23	Mar-23	Maximum	Minimum	Average	STD Deviation
1	New Land area JSW Boundary	59.2	58.3	60.2	59.4	60.2	58.3	59.3	0.8
2	Open field – Near thangamapuri stores, Malamanoor.	63.4	62.6	55.9	52.3	63.4	52.3	58.6	5.4
3	Nearby Mr.Chinnamuthu House, Malamanoor.	60.1	59.8	54.6	55.6	60.1	54.6	57.5	2.8
4	Near Madhayen Temple at Coconut Farm.	56.4	58.3	55.2	58.2	58.3	55.2	57.0	1.5
5	Eastern Gate of JSW.	58.3	57.5	55.9	53.6	58.3	53.6	56.3	2.1
6	Reservoir Premises.	55.7	56.2	54.9	52.3	56.2	52.3	54.8	1.7
7	Executive Staff Quarters, JSW.	51.2	55.9	53.2	58.3	58.3	51.2	54.7	3.1
8	Nearby Railway Crossing kuttappatti village.	53.8	54.2	54.3	54.3	54.3	53.8	54.2	0.2
9	Residential Area Ervadi Village.	56.9	57.3	54.9	57.9	57.9	54.9	56.8	1.3
10	At Coconut Farm, Nearby Railway crossing.	57.4	56.3	55.4	51.3	57.4	51.3	55.1	2.7
11	At Parrynagar Residential Area.	59.2	58.4	54.8	58.9	59.2	54.8	57.8	2.0
12	Over Head Tank	58.4	56.9	57.1	55.3	58.4	55.3	56.9	1.3
13	Opp. To Old Main Gate, Open Agricultural field.	54.6	55.3	53.2	52.6	55.3	52.6	53.9	1.2
14	Guest House Premises.	52.9	53.7	56.1	54.1	56.1	52.9	54.2	1.4
15	Open Field, Pottaneri Village.	54.5	55.1	58.1	59.3	59.3	54.5	56.8	2.3
16	Raw Material Storage Yard (Iron Ore).	57.1	58.7	53.7	56.4	58.7	53.7	56.5	2.1
17	In front of Occupational in Health Centre.	58.8	59	56.7	58.6	59.0	56.7	58.3	1.1
18	Near Pickling & Phosphating Plant 2 KLD ETP	57.4	58.3	54.2	54.3	58.3	54.2	56.1	2.1

Standard limit for Ambient noise level at Daytime is 75 dB (A), Standard limit for Ambient noise level at Nighttime is 70 dB (A). The ambient noise level monitoring results are within the CPCB norms.

ANNEXURE 8 COMPLIANCE STATUS REPORT TO THE CREP CONDITIONS

Annexure 8

Compliance status report for the conditions prescribed in the Corporate Responsibility for Environmental Protection (CREP) to our plant

S.No	Condition	Compliance status/Action taken
1	Coke Oven Plant: To meet the parameters PLD (% leaking doors), PLL (% leaking lids), PLO (% leaking off take) of the notified standards under EPA. To rebuild at least 40% of the coke oven batteries* in next 10 years by December 2012.	Our COP Non-recovery type coke oven and this requirement is not applicable.
2	Steel Melting Shop Fugitive Emission Status To reduce 30% by March 2004 and 100% by March 2008 (including installation of secondary de-dusting facilities).	SMS comprises of an Energy Optimizing Furnace wherein a "wet scrubbing system" comprising of a Down comer, quench chamber, venturi scrubber and cyclone separator and the cleaned gas sent through a chimney. The secondary steel making unit viz. Ladle Furnace is already equipped with a dry scrubbing system comprising of bag filters, belt conveyors and dust silo. The dust is being collected and reused in the Sinter Plant. Dedicated secondary dedusting systems are installed in EOF & LRF and fugitive emissions are significantly reduced. Dedicated dust monitoirng systems are installed in the respective stacks and the real time parameters are connected with CAA,TNPCB
3	Blast Furnace - Direct inject of reducing agents in blast furnace.	Pulverized Coal injection system installed and commissioned along with bag filter as an air pollution control measures (bag filter with stack) to reduce emission during direct injection. The rate of pulverised coal injection is increased (to till 150 - 160 kg/THM) and the implementation resulted in reduction of coke consumption in BF which leads to energy saving.
4	Solid Waste/Hazardous Waste Management Utilization of Steel Melting Shop (SMS) / Blast Furnace (BF) slag as per the following. • By 2004 – 70% • By 2006 – 80% and • By 2007 – 100% Hazardous Waste: - Charge of tar sludge/ETP sludge to coke oven by June 2003 Inventorization of Hazardous waste as per Hazardous waste (M & H) Rules, 1989 as amended in 2000 and implementation of the rules by December 2003. (Tar sludge, acid sludge, waste lubricating oil and type fuel fall in the category of HZ).	our operation. SMS slag is sent for metal recovery system and after crushing reused internal applications & sent cement industries. A ready mix concrete unit is installed. A unique initiative, Paver block unit by using crushed EOF slag. Refractories are selected to withstand high temperature whose shelf life is longer and generation of used refractories are lesser. The same will be recycled in downstream applications and also sold to customers involved with recycling and the
5	Water Conservation / Water Pollution - To reduce specific water consumption to 5 m3/ t for long products and 8 m³/ t for flat products by December 2005.	We are presently manufacturing only long products and our specific water consumption is well within the prescribed limit
6	Installation of continuous stack monitoring	There are 29 nos. of Process stacks. Dust & Gaseous emission monitoring systems are installed as per CTO condition and the real time data of SPM, SO2 & NOx are transmitted to the Care Air Centre of TNPCB and CPCB servers. There are 26 nos. of Non-process stacks. Dust emission monitoring systems are installed as per CTO condition and the real time data of SPM are transmitted to the Care Air Centre of TNPCB and CPCB servers. Apart from the above, TNPCB is conducting bi-annual survey and Manual monitoring is being conducted by a NABL accredited external laboratory on monthly basis. The monitoring results are well within the permissible limits.

S.No	Condition	Compliance status/Action taken
/	The unit shall operate the existing pollution control equipment efficiently and to keep proper record of run hours, failure time and efficiency with immediate effect. Compliance report in this regard be submitted to TNPCB every three months.	time and efficiency. Any failure leads to APC is resulted
8	To implement the recommendations of Life Cycle Assessment (LCA) Study sponsored by MoEF by December 2003.	Being Complied.
9	The industry will initiate the steps to adopt the following clean technologies/measures to improve the performance of industry towards production, energy and environment. • Energy recovery of top blast furnace (BF) gas. • Use of tar-free runner linings. • De-dusting of cast house at tap holes, runners, skimmers ladle and charging points.	Our BF gas pressure (plant capacity is 0.683 MTPA only) is not adequate to install TRT. Our coke oven plant is non-recovery type and hence not applicable. The de-dusting system commissioned at BF-I & II cast house covering tap holes, runners, skimmers ladles and charging points.
	$\mbox{\Large\ensuremath{\checkmark}}$ Suppression of fugitive emissions using nitrogen gas or other inert gas.	
	To study the possibility of slag and fly ash transportation back to the abandoned mines, to fill up the cavities through empty railway wagons while they return back to the mines and its implementation.	
	 Processing of the waste containing flux & ferrous wastes through waste recycling plant. 	The waste containing flux & ferrous waste is utilized to the maximum extent possible in the sinter plant. 100 % of waste containing flux and ferrous is utilized in the plant.
	▼ To implement rainwater harvesting.	Four rain water harvesting ponds are provided. Two are in the plant premises and two are in township.
	✓ Reduction of green house gases by,	Various initiatives and measures are being taken to reduce the GHG emissions and present level of GHG emission is 2.68 MT of CO2/TCS. Major focus are being given to maximise the waste heat utilisation, Renewable energy and resource conservation.
	Reduction in power consumption.	To reduce the power consumption VFDs are being installed whereever possible. LED lights are installed to replace the sodium vapor lamps and many Kaizens are implemented to conserve power.
	Use of by-products gases for power generation.	By product BF gas is being used as fuel in Power Plant for power generation.
	 Promotion of energy optimization technology including energy audit. 	l. a
	 To set targets for resource conservation such as raw material, energy and water consumption to match International Standards. 	
	 Up-gradation in the monitoring and analysis facilities for air and water pollutants. Also to impact elaborate training to the manpower so that realistic data is obtained in the environmental monitoring laboratories. 	fledged lab set up and need based training is being imparted
	• To improve over all house keeping.	5S system is being followed to maintain and improve housekeeping throughout the plant. Due to the implementation, saving in area, inventory control, retrieval time period and standardization practices are well improved.

ANNEXURE 9 COPY OF ADVERTISEMENT IN LOCAL NEWSPAPER FOR EC DATED- 10.02.2020

NOTICE

We would like to inform you that the Ministry of Environment, Forest and Climate change accorded Environmental Clearance vide letter no. F.No. J-11011/281/2006-IA. II (I) Dated 10.02.2020 for the installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA capacity Integrated Steel Plant at JSW Steel Limited, Salem. The copy of Environmental Clearance is available at State Pollution Control Board and at MoEF&CC website: http://environmentclearance.nic.in.

This is issued as per the directives of MoEF&CC.

JSW Steel Limited, Salem

வெள்ளிக்கிழமை, 14 பிப்ரவரி 2020

★★ தினமணி தருமபுரி 3

அநிவிப்ப

தி/வா. ஜே.எஸ். டபுள்யூ ஸ்டீல் லிமிடெட் நிறுவனத்திற்கு 0.8 MTPA ஸ்லாக் அரைக்கும் அலகு நிறுவுதல் மற்றும் மதிப்பு கூட்டல் தொடர்பான புதிய வசதிகள் மற்றும் தொழில்நுட்ப மேம்பாடு வசதிகளை தற்போதுள்ள 1.3 MTPA திறன் ஒருங்கிணைந்த எஃகு ஆலைக்குள் நிறுவ சுற்றுச்சூழல், வனம் மற்றும் பருவநிலை மாற்ற அமைச்சகம் கடித எண். (F.No. J—11011/281/2006—IA. II (I) 10.02.2020 தேதியிட்டது) அனுமதி வழங்கி உள்ளது. மேற்காணும் விபரத்தை தமிழ்நாடு மாசுக்கட்டுப்பாடு வாரியம் மற்றும் இணையத்ளம் http://environmentclearance.nic.in மூலம் தெரிந்து கொள்ளலாம்.

MoEF&CC அறிவறுத்தலின் பேரில் இந்த அறிவிப்பு வெளியிடப்படுகிறது.

ஜே.எஸ். டபுள்யூ. ஸ்டீல் லிமிடெட், சேலம்

ANNEXURE 10 COPY OF ACKNOWLEDGEMENT OF EC COPY SUBMISSION TO HEADS OF LOCAL BODIES & PANCHAYATS

JSW Steel Limited

20th Feb 2020

The District Collector **Salem District**

Dear sir,

We enclose herewith the environmental clearance letter dated 10-02-2020 issued by the Environment, Forest and Climate change (Impact Assessment Division), Government of India for the installation of 0.8 MTPA Slag grinding unit and new facilities related to value addition and Technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited for your information please .

Thanking you,

Yours Truly,

For JSW Steel Ltd, Salem Works,

Brigadier S .Thakur (Rtd)

AVP (PR, Admin and Security)

Encl: EC for Slag Grinding Unit

Salem Works

P.O. Pottaneri, Mecheri, Mettur - Tk, Salem - Dt. Pin : 636 453 Tamilnadu, India. CIN No L27102MH1994PLC152925 T+91 4298 272000 www.jsw.in

Registered Office

JSW Centre Bandra Kurla Complex Bandra East, Mumbai 400 051 **T** +91 22 4286 1000 F +91 22 4286 3000

O P Jindal Group

Salem Works: P.O.Pottaneri,

Mecheri, Mettur - Tk, Salem - Dt. Pin: 636 453

Tamilnadu, India.

CIN No : L27102MH1994PLC152925

GSTIN: 33AAACJ4323N1ZN

Phone : +91 4298 272000 : +91 4298 272272 Fax

Website: www.jsw.in

20th Feb 2020

The President Pottaneri Panchayath Pottaneri 636453

Dear Madam,

We enclose herewith the environmental clearance letter dated 10-02-2020 issued by the Environment, Forest and Climate change (Impact Assessment Division), Government of India for the installation of 0.8 MTPA Slag grinding unit and new facilities related to value addition and Technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited for your information please .

Thanking you,

Yours Truly,

For JSW Steel Ltd, Salem Works

Authorized Signatory,

Registered Office: JSW Centre

Bandra Kurla Complex,

Bandra (East), Mumbai - 400 051.

Phone : +91 22-4286 1000 +91 22-4286 3000 Fax

Part of O.P. Jindal Group

கோச்சேரி ஒன்றியம்.

ANNEXURE 11 ESC FUND ALLOCATION & SPENT FOR THE PERIOD OCTOBER 2022 TO MARCH 2023

The amount spent on the ESC Spent (Rs.in Crs.) for the period April 2022 to March 2023 is given in the table below

Table: ESC Spent (Rs.in Crs.) for the period April 2022 to March 2023

SI.	ESC Spelit (NS.III els.) for the period April 2022			22 to March 2	2 to March 2023		
No.	Description of activities	April – September 22		October – March 23		Total FY 23 (April 22– March 23)	
	Description of activities	Committed	Spent	Committed	Spent	Committed	Spent
1	Health	0	0	0.25	0.08	0.25	0.08
2	Education	0.5	0.5	0.15	0.01	0.65	0.51
3	Infrastructure development	0	0	0.15	0.08	0.15	0.08
4	Livelihood support	0	0	0.2	0	0.2	0
5	Others	0	0	0.25	0.28	0.25	0.28
	Total in Crs.	0.5	0.5	1	0.45	1.5	0.95
	ESC spent from 2017 onwards to till March 23	Total			-	4.97	

ANNEXURE 12 DETAILS OF APC MEASURES PROVIDED IN STEEL & CPPII

Stack Stack stacked to Stack Type Air Pollution Control Equipment (APC) 1 SP81- Sinter machine waste gas fan stack Process ESP with stack 2 SP81 - Couring system stack Non- Process Malicrycture with stack 3 SP81 - Couring system stack Non- Process Bog Filters with stack 4 SP81 - RMMS dads extraction system Non- Process Stack 6 BF81 - Couring system stack Non- Process Stack 6 BF81 - Couring system stack Non- Process Stack 6 BF81 - Couring system stack Non- Process Bog Filters with stack 7 BF81 - Stack bouse deducting Non- Process Bog Filters with stack 8 BF81 - Couring system stack Non- Process Bog Filters with stack 9 Process Bollers (1 x 25 TP81 & 1 x 8 TP81) Non- Process Bog Filters with stack 10 Process Bollers (1 x 25 TP81 & 1 x 8 TP81) Non- Process Bog Filter with stack 11 ECP81 - Primary deducting system stack Non- Process Bog Filter with stack 12 COMAS - B		Annexure -12				
Stack Hype Stack attached to Process ESP with stack ESP with stack SP#1 - Cooling system stack Non-Process Multicycline with stack APP - Cooling system stack Non-Process Bag Filters with stack SP#1 - Folkhis Guit extraction system Non-Process Stack SP#1 - Hot stove stack Process Stack SP#1 - Stock house deducting Non-Process Bag Filters with stack Bag Filters with stack SP#1 - Stock house deducting Non-Process Bag Filters with stack Bag Filters with stack SP#1 - Stock house deducting system stack Non-Process Bag Filters with stack Bag Filters with stack SP#1 - Cooling Stack Stack Non-Process Bag Filters with stack SP#1 - Stock house deducting system stack Non-Process Bag Filters with stack SP#1 - Stock house deducting system stack Non-Process Bag Filters with stack Common Stack Non-Process Bag Filters with stack Ron-Process Bag Filters with stack Common Stack Non-Process Bag Filters with stack Ron-Process Bag Filter with stack Ron-Process Stack		Details of Air Pollution	Control measures provided in S	Steel & CPPII		
SP#1 - Cooling system stack Non- Process Bag Filters with stack SP#1 - Dedusting system stack Non- Process Bag Filters with stack SP#1 - BedHS dust extraction system Non- Process Sack SP#1 - Stock house dedusting Non- Process SP#1 - Stock house dedusting Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Process SP#1 - Stock house dedusting system stack Non- Process SP#1 - Stock house dedusting system stack Process SP#1 - Stock house dedusting system stack Process Venturi Scrubber with stack CCM#1 Scrubber with stack Sp#Ilter swith stack CCM#1 Scrubber with stack Stack CCM#1 Scrubber with stack Stack Process Stack Stack Process Stack Process Sp#Ilter with stack Stack LRF#1 - Primary dedusting system stack Process Sp#Ilter with stack Sp#Ilter with stack Stack LRF#1 - Primary stack house stack with a #2 Non- Process Sp#Ilter with stack Sp#Ilter with stack Stack Process Stack CCM#2 - Curi tumes whouse system stack Non- Process Stack CCM#2 - Curi tumes whouse system stack Process Stack CCM#2 - Curi tumes whouse stack with a #2 Non- Process Stack CCM#2 - Curi tumes whouse stack with a #2 Non- Process Stack CCM#2 - Curi tumes whouse stack with a #2 Non- Process Stack COP - Coke oven battery#2 emergency stack with a #3 Non- Process Stack COP - Coke oven battery#2 emergency stack with a #3 Non- Process Stack COP - Coke oven battery#2 emergency stack with a #4 Non- Process Stack COP - Watel Healt R		Stack attached to	Stack Type	Air Pollution Control Equipment (APC)		
SPM1 - Declusing system stack A SPM1 - Rehalts dust extraction system Non- Process Bag Filters with stack Frocess Stack	1	SP#1 - Sinter machine waste gas fan stack	Process	ESP with stack		
SP81 - RMIRS dust extraction system	2	SP#1 - Cooling system stack	Non- Process	Multicyclone with stack		
Septil - Hot store stack Process Stack	3	SP#1 - Dedusting system stack	Non- Process	Bag Filters with stack		
BF#1 - GCP flare stack (Emergency stack) Non- Process Venturi Scrubber with stack	4	SP#1 - RMHS dust extraction system	Non- Process	Bag Filters with stack		
Beg Fill - Stock house dedusting	5	BF#1 - Hot stove stack	Process	Stack		
B BF#1- Dust Extraction system for RMHS Non- Process Bag Filters with stack 9 BF#1- Cast house dedusting system stack Non- Process Common Stack 10 Process Boilers (1 x 25 TPH & 1 X 8 TPH) Process Common Stack 11 EOF#1- Primary dedusting system stack Process Venturil Scrubber with stack 12 CCM#3-Billet prinding machine stack Non- Process Bag Filters with stack 13 CCM#1 Steam exhaust system stack Non- Process Stack 14 EOF#2- Primary dedusting system stack Process Venturil Scrubber with stack 15 EOF#1&2 - Secondary dedusting system stack Process Venturil Scrubber with stack 16 LDF#1 - Primary dedusting system stack Non- Process Bag Filter with stack 17 LRF#2 - Secondary dedusting system stack Process Bag Filter with stack 18 Vacuum degassing boiler#1 & #2 stack Process Bag Filter with stack 19 CCM#2 Steam exhaust system stack Process Bag Filter with stack 19 CCM#2 Steam exhaust system stack Process Stack 20 CCM#2 - Cut turnes exhaust system stack Non- Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Stack 24 COP - Coke oven battery#1 emergency stack Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler#1 stack Process Stack 28 COP - Waste Heat Recovery Boiler#1 stack Process Stack 29 COP - Waste Heat Recovery Boiler#1 stack Process Stack 20 COP - Waste Heat Recovery Boiler#1 stack Process Stack 21 COP - Waste Heat Recovery Boiler#1 stack Process Stack 22 COP - Waste Heat Recovery Boiler#1 stack Process Stack 29 COP - Waste Heat Recovery Boiler#1 stack Process Stack 20 COP - Waste Heat Recovery Boiler#1 stack Process Stack 21 COP - Waste Heat Recovery Boiler#1 stack Process Stack 22 COP - Waste Heat Recovery Boiler#1 stack Process Stack 23 Cop - Waste Heat Recovery Boiler#1 stack Process Stack 24 COP - Waste Heat Recovery Boiler#1 stack Process Stack 25 COP - Waste Heat R	6	BF#1 - GCP flare stack (Emergency stack)	Non- Process	Venturi Scrubber with stack		
BF#1- Cast house dedusting system stack Non- Process Bag Filters with stack Common Stack Common Stack Venturi Scrubber with stack Process Venturi Scrubber with stack Ron- Process Stack CCM#3-Billet grinding machine stack Non- Process Stack CCM#1 Steam exhaust system stack Non- Process Stack CF#1.82 - Primary dedusting system stack Non- Process Stack Non- Process Bag Filters with stack Ron- Process Venturi Scrubber with stack Ron- Process Venturi Scrubber with stack Ron- Process Venturi Scrubber with stack Ron- Process Bag Filter with stack Ron- Process Stack Ron-	7	BF#1 - Stock house dedusting	Non- Process	Bag Filters with stack		
Process Boilers (1 x 25 TPH & 1 x 8 TPH) Process Common Stack Venturi Scrubber with stack Process Venturi Scrubber with stack Process Venturi Scrubber with stack Process Stack COM#3 -Bilet grinding machine stack Non- Process Stack Process Venturi Scrubber with stack Non- Process Stack Process Venturi Scrubber with stack Process Stack Process Stack Process Bag Filter with stack Process Stack P	8	BF#1- Dust Extraction system for RMHS	Non- Process	Bag Filters with stack		
Process Venturi Scrubber with stack 12 CCM#3-Billet grinding machine stack Non-Process Bag Filters with stack 13 CCM#1 Steam exhaust system stack Non-Process Stack 14 EOF#2- Primary dedusting system stack Process Venturi Scrubber with stack 15 EOF#3- Secondary dedusting system stack Process Bag Filter with stack 16 LRF#1 - Primary dedusting system stack Non-Process Bag Filter with stack 17 LRF#2,3.4 - Primary dedusting system stack Process Bag Filter with stack 18 Vacuum degassing boiler#1 & #2 stack Process Stack 19 CCM#2 Steam exhaust system stack #1 & #2 Non-Process Stack 20 CCM#2 - Curl furnes exhaust system stack #1 & #2 Non-Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non-Process Stack 24 COP - Coke oven battery#1 emergency stack# Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#2 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 20 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 20 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 20 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 20 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 20 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 21 BLM - Reheating furnace stack #1 & 2 Process Stack 22 BLM - Reheating furnace stack #1 & 2 Process Stack 23 Limeklin(Not in Operation) Non-Process Stack 24 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 25 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 26 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 27 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 28 EGRAPHING in Operation Non-Process Stack 29 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 5 stack Process Stack	9	BF#1- Cast house dedusting system stack	Non- Process	Bag Filters with stack		
12 CCM#3 -Billet grinding machine stack Non- Process Stack 13 CCM#1 Steam exhaust system stack Process Venturi Scrubber with stack 14 EOF#2 - Primary dedusting system stack Process Venturi Scrubber with stack 15 EOF#18 - Secondary dedusting system stack Non- Process Bag Filter with stack 16 LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Stack Non- Process Bag Filter with stack 17 LRF#2,3.4 - Primary dedusting system stack Process Bag Filter with stack 18 Vacuum degassing boller#1 & #2 stack Process Stack 19 CCM#2 Steam exhaust system stack #1 & #2 Non- Process Stack 19 CCM#2 - Cut furnes exhaust system stack #1 & #2 Non- Process Stack 20 CCM#2 - Cut furnes exhaust system stack #1 Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Stack 24 COP - Coke oven battery#2 emergency stack Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler #1 stack Process Stack 28 COP - Waste Heat Recovery Boiler #1 stack Process Stack 31 COP - Waste Heat Recovery Boiler #3 stack Process Stack 32 Coke Quenching Tower Stack Process Stack 33 COP - Waste Heat Recovery Boiler #4 stack Process Stack 34 COP - Waste Heat Recovery Boiler #5 stack Process Stack 35 COP - Waste Heat Recovery Boiler #5 stack Process Stack 36 COP - Waste Heat Recovery Boiler #5 stack Process Stack 37 COP - Waste Heat Recovery Boiler #5 stack Process Stack 38 COP - Waste Heat Recovery Boiler #5 stack Process Stack 39 COP - Waste Heat Recovery Boiler #5 stack Process Stack 30 COP - Waste Heat Recovery Boiler #6 stack Process Stack 31 COP - Waste Heat Recovery Boiler #7 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Stack 34 BRM- Reheating furnace stack #1 & 2 Process Stack	10	Process Boilers (1 x 25 TPH & 1 X 8 TPH)	Process	Common Stack		
Stack Communication of the stack of the sta	11	EOF#1- Primary dedusting system stack	Process	Venturi Scrubber with stack		
EOF#2 - Primary dedusting system stack	12	CCM#3 -Billet grinding machine stack	Non- Process	Bag Filters with stack		
15 EOF#1&2 - Secondary dedusting system stack Non- Process Bag Filter with stack 16 LRF#1 - Primary & LRF#1 to 4 secondary dedusting system stack 17 LRF#2,3.4 - Primary dedusting system stack Process Bag Filter with stack 18 Vacuum degassing boller#1 & #2 stack Process Stack 19 CCM#2 Steam exhaust system stack #1 & #2 Non- Process Stack 20 CCM#2 - Cut fumes exhaust system stack #1 & #2 Non- Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Stack 24 COP - Coke oven battery#2 emergency stack Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler #1 stack Process Stack 28 COP - Waste Heat Recovery Boiler #3 stack Process Stack 30 COP - Waste Heat Recovery Boiler #4 stack Process Stack 31 COP - Waste Heat Recovery Boiler #4 stack Process Stack 32 Erack Stack Process Stack 33 Limeklin(Not in Operation) Non- Process Stack 34 Limeklin(Not in Operation) Non- Process Stack 35 Limeklin(Not in Operation) Non- Process Stack 36 RM- Reheating furnace stack #1 & 2 Process Stack	13	CCM#1 Steam exhaust system stack	Non- Process	Stack		
LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Non- Process Bag Filter with stack LRF#2,3.4 - Primary dedusting system stack Process Bag Filter with stack Process Bag Filter with stack LRF#2,3.4 - Primary dedusting system stack Process Stack Process Stack CM#2 Steam exhaust system stack #1 & #2 Non- Process Stack CM#2 - Cut fumes exhaust system stack Non- Process Stack LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Stack CM#2 - Cut fumes exhaust system stack Non- Process Stack LRF#2 - LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Stack LRF#2 - LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Stack CM#2 - Cut fumes exhaust system stack Non- Process Stack LRF#2 - LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Stack LRF#2 - LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Stack LRF#2 - LRF#1 - Primary & LRF#1 to 4 secondary dedusting system Stack LRF#2 - LRF#2 - LRF#1 to 4 secondary dedusting system Stack LRF#2 - LRF#1 - Primary & LRF#1 to 4 secondary dedusting system stack LRF#2 - LRF#1 - Primary & LRF#1 to 4 secondary dedusting system stack LRF#2 - LRF#1 - LRF#2 - LRF#1 to 4 secondary dedusting system stack LRF#2 - LRF#1 - LRF#1 to 4 secondary dedusting system stack LRF#2 - LRF#1 - LRF#1 to 4 secondary dedusting system stack LRF#2 - LRF#1 - LRF#1 to 4 stack LRF#2 - LRF#1 to 4 stack LRF#1 - LRF#2 - LRF#1 to 4 stack LRF#2 - LRF#1 to 4 stack LRF#2 - LRF#1 to 4 stack LRF#1 - LRF#	14	EOF#2 - Primary dedusting system stack	Process	Venturi Scrubber with stack		
17 LRF#2.3.4 - Primary dedusting system stack Process Bag Filter with stack 18 Vacuum degassing boiler#1 & #2 stack Process Stack 19 CCM#2 Steam exhaust system stack #1 & #2 Non- Process Stack 20 CCM#2 - Cut fumes exhaust system stack Non- Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Stack 24 COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler # 1 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 Er Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Stack 34 BRM- Reheating furnace stack #1 & 2 Process Stack 35 Br Gas Fired Boiler Process Stack 36 BRM- Reheating furnace stack #1 & 2 Process Stack 37 Stack 38 BRM- Reheating furnace stack #1 & 2 Process Stack 39 BRM- Reheating furnace stack #1 & 2 Process Stack 30 BRM- Reheating furnace stack #1 & 2 Process Stack 30 BRM- Reheating furnace stack #1 & 2 Process Stack	15	EOF#1&2 - Secondary dedusting system stack	Non- Process	Bag Filter with stack		
18 Vacuum degassing boiler#1 & #2 stack Process Stack 19 CCM#2 Steam exhaust system stack #1 & #2 Non- Process Stack 20 CCM#2 - Cut fumes exhaust system stack Non- Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Stack 24 COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler # 1 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limeklin(Not in Operation) Non- Process Stack 34 BRM- Reheating furnace stack #1 & 2 Process Stack 35 Stack 36 Diank Process Stack 37 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 38 BRM- Reheating furnace stack #1 & 2 Process Stack 39 BRM- Reheating furnace stack #1 & 2 Process Stack 30 BRM- Reheating furnace stack #1 & 2 Process Stack	16		Non- Process	Bag Filter with stack		
19 CCM#2 Steam exhaust system stack #1 & #2 Non- Process Stack 20 CCM#2 - Cut fumes exhaust system stack Non- Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Stack 24 COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler # 1 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limeklin(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2	17	LRF#2,3,4 - Primary dedusting system stack	Process	Bag Filter with stack		
20 CCM#2 - Cut fumes exhaust system stack Non- Process Stack 21 BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Stack 24 COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler #1 stack Process Stack 28 COP - Waste Heat Recovery Boiler #2 stack Process Stack 29 COP - Waste Heat Recovery Boiler #3 stack Process Stack 30 COP - Waste Heat Recovery Boiler #4 stack Process Stack 31 COP - Waste Heat Recovery Boiler #5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	18	Vacuum degassing boiler#1 & #2 stack	Process	Stack		
BLM - Reheating furnace stack #1 Process Stack 22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Grit Arrester stack 24 COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler # 1 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	19	CCM#2 Steam exhaust system stack #1 & #2	Non- Process	Stack		
22 BLM - Reheating furnace stack #2 Process Stack 23 Coke Quenching Tower Non- Process Grit Arrester stack 24 COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack 25 COP - Coke oven battery#2 emergency stack Process Stack 26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler # 1 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	20	CCM#2 - Cut fumes exhaust system stack	Non- Process	Stack		
Coke Quenching Tower Non- Process Grit Arrester stack COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack COP - Coke oven battery#2 emergency stack Process Stack COP - Coke oven battery#3 emergency stack Process Stack COP - Waste Heat Recovery Boiler # 1 stack Process Stack COP - Waste Heat Recovery Boiler # 2 stack Process Stack COP - Waste Heat Recovery Boiler # 3 stack Process Stack COP - Waste Heat Recovery Boiler # 4 stack Process Stack Stack COP - Waste Heat Recovery Boiler # 5 stack Process Stack Stack Stack Stack COP - Waste Heat Recovery Boiler # 5 stack Process Stack	21	BLM - Reheating furnace stack #1	Process	Stack		
COP - Coke oven battery #1 emergency stack# 1A & 1B Process Stack COP - Coke oven battery#2 emergency stack Process Stack COP - Coke oven battery#3 emergency stack Process Stack COP - Waste Heat Recovery Boiler # 1 stack Process Stack COP - Waste Heat Recovery Boiler # 2 stack Process Stack COP - Waste Heat Recovery Boiler # 3 stack Process Stack COP - Waste Heat Recovery Boiler # 3 stack Process Stack COP - Waste Heat Recovery Boiler # 4 stack Process Stack COP - Waste Heat Recovery Boiler # 4 stack Process Stack Stack COP - Waste Heat Recovery Boiler # 5 stack Process Stack Limekiln(Not in Operation) Non- Process Not in operation Not in operation Stack	22	BLM - Reheating furnace stack #2	Process	Stack		
COP - Coke oven battery#2 emergency stack Process Stack COP - Coke oven battery#3 emergency stack Process Stack COP - Waste Heat Recovery Boiler # 1 stack Process Stack COP - Waste Heat Recovery Boiler # 2 stack Process Stack COP - Waste Heat Recovery Boiler # 3 stack Process Stack COP - Waste Heat Recovery Boiler # 4 stack Process Stack COP - Waste Heat Recovery Boiler # 4 stack Process Stack Stack Stack The companies of	23	Coke Quenching Tower	Non- Process	Grit Arrester stack		
26 COP - Coke oven battery#3 emergency stack Process Stack 27 COP - Waste Heat Recovery Boiler # 1 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	24	COP - Coke oven battery #1 emergency stack# 1A & 1B	Process	Stack		
27 COP - Waste Heat Recovery Boiler # 1 stack Process Stack 28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	25	COP - Coke oven battery#2 emergency stack	Process	Stack		
28 COP - Waste Heat Recovery Boiler # 2 stack Process Stack 29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	26	COP - Coke oven battery#3 emergency stack	Process	Stack		
29 COP - Waste Heat Recovery Boiler # 3 stack Process Stack 30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	27	COP - Waste Heat Recovery Boiler # 1 stack	Process	Stack		
30 COP - Waste Heat Recovery Boiler # 4 stack Process Stack 31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	28	COP - Waste Heat Recovery Boiler # 2 stack	Process	Stack		
31 COP - Waste Heat Recovery Boiler # 5 stack Process Stack 32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	29	COP - Waste Heat Recovery Boiler # 3 stack	Process	Stack		
32 BF Gas Fired Boiler Process Stack 33 Limekiln(Not in Operation) Non- Process Not in operation 34 BRM- Reheating furnace stack #1 & 2 Process Stack	30	COP - Waste Heat Recovery Boiler # 4 stack	Process	Stack		
33 Limekiln(Not in Operation) Non- Process Not in operation Stack BRM- Reheating furnace stack #1 & 2 Process Stack	31	COP - Waste Heat Recovery Boiler # 5 stack	Process	Stack		
34 BRM- Reheating furnace stack #1 & 2 Process Stack	32	BF Gas Fired Boiler	Process	Stack		
	33	Limekiln(Not in Operation)	Non- Process	Not in operation		
35 SP#2 - Sinter machine waste gas fan stack Process ESP with stack	34	BRM- Reheating furnace stack #1 & 2	Process	Stack		
	35	SP#2 - Sinter machine waste gas fan stack	Process	ESP with stack		

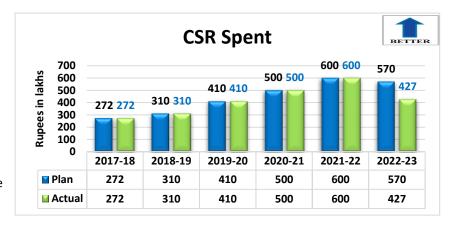
Stack No	Stack attached to	Stack Type	Air Pollution Control Equipment (APC)
36	SP#2 - Dedusting and cooling system stack	Non- Process	ESP with stack
37	SP#2 - Crushing of fuel and raw materials dedusting stack	Non- Process	Bag Filters with stack
38	BF#2- Hot stove stack	Process	Stack
39	BF#2 - GCP flare stack (Emergency stack)	Non- Process	Bag Filters with stack
40	BF#2 - Stock house dedusting & RMH system stack	Non- Process	Bag Filters with stack
41	BF#2 - Cast house dedusting system stack	Non- Process	Bag Filters with stack
42	BF - Pulverised Coal Injection unit	Non- Process	Bag Filters with stack
43	COP-DG Set -625 KVA Stack	Non- Process	Acoustic enclosures with Stack
44	EOF#1 - DG Set -625 KVA stack	Non- Process	Acoustic enclosures with Stack
45	EOF#1 - DG Set -625 KVA stack	Non- Process	Acoustic enclosures with Stack
46	CCM#3 - Steam exhaust system stack #1	Non- Process	Stack
47	Process Boilers area - DG set -1250 KVA stack	Non- Process	Acoustic enclosures with Stack
48	Pickling Plant- Acid Fumes exhaust system stack	Non- Process	Wet scrubber with stack
49	Pickling Plant- Acid bath - Hot water Generator Stack	Process	Stack
50	Pickling Plant- ARP - Hot water Generator Stack	Process	Stack
51	Pickling Plant- MEE – Thermic fluid Heater Stack	Process	Stack
52	BF Slag Grinding mill stack	Non- Process	Bag Filters with stack
53	BF Slag Grinding unit-Sinter waste Gas- Emergency stack	Non- Process	Damper with vent stack
54	BF Slag Grinding unit- Hot Air Generator - Emergency stack	Non- Process	Damper with vent stack from HAG
55	CCM#1 -Billet grinding machine stack	Non- Process	Stack
56	CCM#2 -Billet grinding machine stack	Non- Process	Stack
57	EOF#2 - DG Set - 1250 KVA Stack	Non- Process -Emergency stack	Acoustic enclosures with stack
58	CCM#3 - DG Set - 1250 KVA stack	Non- Process -Emergency stack	Acoustic enclosures with stack
59	EOF#1 - DG Set -275 KVA Stack	Non- Process -Emergency stack	Acoustic enclosures with stack
60	EOF#2 - DG Set - 275 KVA Stack	Non- Process -Emergency stack	Acoustic enclosures with stack
61	BRM - DG set - 650 KVA - stack	Non- Process -Emergency stack	Acoustic enclosures with stack
62	Pickling plant - DG Set - 400 KVA - stack	Non- Process -Emergency stack	Acoustic enclosures with stack
63	Batching plant#1 Cement silo vent stack	Non- Process	Bag Filters with stack
64	Batching plant#2 Cement silo vent stack	Non- Process	Bag Filters with stack
65	COP - Coke cutter dedusting system stack	Non- Process	Bag Filters with stack
66	CCM#3 - Steam exhaust system stack #2	Non- Process	Stack
67	Coal fired boiler (127 T/HR)	Process	ESP with stack
68	Coal crusher house	Non- Process	Bag Filters with stack
69	Coal screening section	Non- Process	Bag Filters with stack
70	Raw material transfer and discharge point	Non- Process	Bag Filters with stack
71	Fly ash storage silo	Non- Process	Bag Filters with stack
72	Bottom ash storage silo	Non- Process	Bag Filters with stack
73	Diesel generator set – 500 KVA	Non- Process -Emergency stack	Stack
74	Diesel generator set – 275 KVA	Non- Process -Emergency stack	stack

ANNEXURE 13 DETAILS OF GREENBELT DEVELOPMENT

Annexure 13 Details of Greenbelt Development

SI.No.	Period	Quantity
1	1997 - 99	30600
2	1999 - 00	15000
3	2000 - 01	20000
4	2001 - 02	4940
5	2002 - 03	10400
6	2003 - 04	13400
7	2004 - 05	100
8	2005 - 06	1100
9	2006 - 07	200
10	2007 - 08	4395
11	2008 - 09	5120
12	01.04.2009 to 30.06.2009	820
13	01.07.2009 to 31.12.2009	2240
14	01.01.2010 to 30.06.2010	5590
15	01.07.2010 to 31.12.2010	9250
16	01.01.2011 to 30.06.2011	4000
17	01.07.2011 to 31.12.2011	4930
18	01.01.2012 to 30.06.2012	3700
19	01.07.2012 to 31.12.2012	5500
20	01.01.2013 to 30.06.2013	2410
21	01.07.2013 to 31.12.2013	3300
22	01.01.2014 to 30.06.2014	6300
23	01.07.2014 to 31.12.2014	7300
23	01.01.2015 to 31.06.2015	9600
24	01.07.2015 to 31.12.2015	10000
25	01.01.2016 to 30.06.2016	1400
26	01.07.2016 to 31.12.2016	4600
27	01.01.2017 to 30.06.2017	700
28	01.07.2017 to 31.12.2017	3250
29	01.01.2018 to 30.06.2018	3650
30	01.07.2018 to 31.12.2018	11385
31	01.01.2019 to 30.06.2019	4490
32	01.07.2019 to 31.12.2019	5864
33	01.01.2020 to 30.06.2020	5660
34	01.07.2020 to 31.12.2020	14466
35	01.01.2021 to 30.06.2021	4449
36	01.07.2021 to 31.09.2021	5364
37	01.10.2021 to 31.03.2022	6692
38	01.04.2022 to 30.09.2022	3676
39	01.10.2022 to 31.03.2023	6580
	Total	262421

ANNEXURE 14 REPORT ON CER ACTIVITIES


PART I - CSR REPORT FOR THE PERIOD OF OCTOBER 2022 TO MARCH 2023

Background

JSW is deeply conscious of its vision and responsibilities to the community around the plant. Empowering citizen with better health, education and employment opportunities is JSW's mission. JSW is committed to improve the quality of life of surrounding community through Corporate Social Responsibility (CSR) programmes. We have well laid down community development program under CSR. Our focus is on

- Education
- Environment
- Women Empowerment
- Sports and
- Rural Infrastructure
 Development.

People in Pottaneri, M.Kalipatti, Kuttapatti, Viruthasampatti, Gonur Panchayats and Mecheri Town are covered under CSR projects. Our CSR spent for the financial year 2022-23 is Rs. 4.27 Crores.

HEALTH – UPGRADATION OF MECHERI PHC

Mecheri Primary Health Care Center is main PHC which is accessing by more than 25 villages. On an every basis 500 patients are utilising the benefit of this particular PHC especially 200 pre and post natal women are accessing from surrounfing villages for their routine checkup and delivery. We have renovated New born baby stabilizer unit with setting up of permanent 4 bedded breathing equipmenrts, operation theater, delivery hall and toilts. This unit is used for all kind of issues of new born baby. This intervention is much more needed for the benefit of pre and post natal mothers.

EDUCATION – EARLY INTERVENTION CENTER

JSW – CSR handed over therapy and learning materials to 3 Early Intervention Centers of Mecheri, Nangavalli & Kolathur.

Material includes Physio & Speech therapy unit, sensory unit, smart TVs, learning equipment's and so forth. The material worth is Rs. 9,62,397/- These 3 centers are being accessed by 427 special children from 15 panchayats & 3 unions. This intervention is to ensure an inclusive, equitable learning environment for special children and to make them self-depended by giving them required therapy. Through this intervention we are addressing the needs of (0 to 18) age groups of special children.

HEALTH – EYE SCREENING TO SCHOOL STUDENTS

JSW – CSR screend 14228 students from 43 schools and villages. Through this intervention we have addressed vision related issues and distributed 562 spectacles to needed students. All 43 schools are from DIZ. And also given awareness on intakes in order to prevent eye related

issues.

SPORTS - CHESS TOURNAMENT AT SALEM

JSW - CSR organized and inaugurated Chess Tournament for the Salem district school students. This intervention would lead children to participate in State and Nationa level tournament. Playing chess shall improve children's cognitive skills such as memory, planning and problem solving, Through this initiative we have engaged 1500 students from across Salem district. Most improtently the school admistration and parents were encouraged students to participate in the tournament. The worth of project is Rs.500000/-.

WOMEN EMPOWERMENT PROGRAME - BPO

JSW — CSR initiated BPO with 50 female candidates. We are empowering women to be economically independent by creating employment opportunities for them. We have recruited candidates from economically weaker section families (Direct Impact Zone) to improve their standards of living by creating employment opportunities for rural womens. Empowering them to be economically indendent.

EDUCATION – UDAAN SCHOLARSHIP

We have been offering every year JSW Udaan Scholarship to surrounding students those who pursuing their higher education. We have sponsored scholarship worth of Rs. 80,00,000 /- this FY-2022-23 with an aim of make education accessible to youth of our surrounding community. This year covered 214 deserving students from Salem district especially have first priority to M. Kalipatti and Pottaneri Panchayats through our initiative.

EDUCATION - JSW ASPIRE PROGRAM

In order to improve life skills among young generation. We have initiated life skill training program, through this initiatives targeted 1500 students from 7 government schools within radiation of 5 km. Through this initiative enhancing skills of children's life skills, carrier counsiling, problem solving & critical thinking. This initiative is not only targeted schools children but also educating their parents on importance of education and conducting activities to create awarness among parents. Also established Community Learning Center (CLC) at community level to reach children as well their parents. Also encouraged children to participate National days such as National Girl child day, Children's Day, Ocean Day, Nutrition day and so forth.

EDUCATION - SCHOOL INFRASTRUCTURE - METTUR

We have renovate six classrooms which is 100 years old school. The classroom conditions were in unusable condition and there were no adequate and good learning atmosphere for students come from rural background. By renovating six classrooms we have created good learning environment to students as well school administation. This is the only school in Mettur reagion is being accessed by more than 1000 students. And these students are from socio-economically weaker session. We have ensured quality infrastructure with the worth of 17,00000/-

EDUCATION - SCHOOL INFRA - THANEER KUTTAPPATI

We have renovated Thaneer Kuttappati Primay School. This school is being accessed by 45 students from rural areas. The classroom conditions were poorest hence based on the need we have renovated entire primary school with the following facilities: building renovation, water facilities, renovated toilet, paver block, wall paintings for visual learning and fencing. Creating good atmosphere is one of our primary focus, especially surrounding government schools, in line with that we have been renovating surrounding schools. At presnt the school adminstation, students and parents are pleased with our intervention.

SPORTS – SPORTS MATERIALS FOR GOVT SCHOOLS

JSW – CSR handed over the sports materials to 7 government higher secondary schools and 14 middle schools which are surrounded by our plant. Given 35 types of sports materials. This initiative would encourage students and physical education teachers to engage in sports activities on every day basis. The worth of the sports equipment is Rs.12,62,175/-. Through this initiative we could engage more than 5000 students in sports activities.

ENVIRONMENT - MHAVANAM PROJECT

We have established the Mahavanam forest at Vanavasi – Government Higher Secondary School in 20,000 sqft with 3500 saplings and it includes 18 varieties of fruit bearing plants and 22 native species. Mahavanam is one of the methods to increase green cover at Salem location. Developing Mahavanam would contribute significantly to control human pollution and contribute towards global climate change; JSW-CSR is intended to bring sustainable change in the surrounding environment by involving in the development of forest to increase green cover at around plant and Salem. On an average, one acre of new forest can sequester about 2.5 tons of carbon annually. In one year, an acre of forest can absorb twice the CO2 produced by the average car's annual

mileage.

HEALTH - UPGRADATION OF PHC

JSW – CSR constructed patient waiting hall in Kuttappatti PHC. In kuttapati panchayat this is the main PHC, every week pre and post natal mother check-up happening in this PHC. On weekly basis 100 -150 pre and post natal mothers for their regular check-ups. Due to insufficent space the patients were sitting or standing outside, especially patient were facing difficulties during rainy and sunny seasons. The Block Medical Officer, workers and patients are expressing their gratitue for our contribution.

SPORTS - SILAMBAM ART

JSW – CSR is initiated Silambam art activity to surrounding government school students from 5 schools. We have trained 200 students on Silambam art. Also these 200 students were participated in World Record Event and shown their potential in Silambam

The amount spent on the CSR activities during the period of October to March 2023 is given in the Table 1

Table 1 : CSR spent details for the period October – March 2023

S. No	CSR Activities	Amount Spent Rs.in lakhs	Remarks
1	FPO Agri Livelihoods	19.64	Work Completed
2	Greenery Development	0	Work Completed
3	Health Outreach Program-Camps	10	Work Completed
4	JSW Aspire Project	41.37	Work Completed
5	JSW UDAAN Scholarship	74.33	Work Completed
6	Promote Rural Sports	30	Work Completed
7	Support to BPO	36.46	Work Completed
8	Support to Kingston Engg College	130	Work Completed
9	School Infrastructure	29.02	Work Completed
	Total	370.82	

The amount spent on the CSR activities during the period of April to March 2023 is given in the Table 2

Table 2: CSR spent details for FY 2023

S. No	CSR Activitiy	April 22 – September 23 (in lakhs)	October 22 – March 23 (in lakhs)	Total Spent (in lakhs)
1	Ensuring access to drinkng water	15.1	0	15.1
2	FPO Agri Livelihoods	0	19.64	19.64
3	Greenery Development	23.6	0	23.6
4	Health Outreach Program-Camps	0	10	10
5	JSW Aspire Project	0	41.37	41.37
6	JSW UDAAN Scholarship	0	74.33	74.33
7	Promote Rural Sports	e Rural Sports 0		30
8	Support to BPO	14.06	36.46	50.52
9	Support to Kingston Engg College	0	130	130
10	Women's livelihood projects	4.28	0	4.28
11	School Infrastructure	0	29.02	29.02
	Total	57.04	370.82	427.86

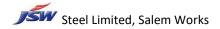
PART II - ENVIRONMENT SOCIAL COMMITMENT REPORT FOR THE PERIOD OCTOBER 2022 TO MARCH 2023

JSW steel Ltd., Salem works is the only Integrated steel plant in Tamil Nadu and presently operating with production capacity of 1.15 MTPA. JSW Steel Limited, Salem works is highly committed to protect the environment with distinctive focus on Triple bottom growth for sustainable development. The organization has always maintained Statutory and Regulatory compliances and believes in maintaining harmony with all the stake holders and contributes to societal support activities like:

- Water shed programmes
- Supplying drinking water
- Sanitation facilities
- Road repair/constructions
- Health camps
- Education activities, etc.

2

EDUCATION - NMMS - STUDY MATERIALS



JSW – CSR supported study materials to selected 17 schools. National 1.2Means Cum-Merit Scholarship (NMMS) is Central Government Scholarship Scheme. To avail scholarship the central government is conducting NMMS exam for students studying class 8th in government schools. those who clear the NMMS exam are eligible to avail montly incentive of Rs. 1000/- per month. Mecheri block surrounding government middle schools are taking an effort to train students during lunch break to avail scholarships. The government school students are comingfrom economically weaker families hence they are not able to afford to purchase study materials. Based on the request that we have supported for study materials for needy students and other required materials. The worth of study material is Rs.70,000/-

SUPPORTED TO PONGAL FESTIVAL CELEBRATION

Every year we have been supporting to conduct events on the ocaion of Pongal festival at Pottaneri Panchayat. In this event irrespective of gender and age people are participating in events. In order to encourage them we are contributing to award them with small token of gifts the worth is Rs.15000/-.

RURAL INFRA – POTTANERI VAO/RI OFFICE

We have renovated Village Adminstation office and Revnue Inspector office were renovated in two panchayats of Pottaneri and M.Kalippati. The work involved worth of Rs.600000/-

SUPPORTED TO SUB- COLLECTOR OFFICE

We have supported desktop, printer, steel almirah, wooden cupbord to district Sub- Collector office, Mettur. In order to maintain a good rapport with the government officals.

SUPPORTED MANCHAPAI VENDING MACHINE

JSW installed bag Vending Machine in Salem office at Tamil Nadu Pollution Control Board for the public usage. This initiative would enforce the public to use cloth bags or eco-friendly bags and avoid the usage of plastics in Salem district. Also this initiative would give employment opportunities to the needy people in the public. Through this initiative we could promote the Scheme – 2022 launched by the

Tamil Nadu Government. By initiating this activity can reduce the usage of wastes in Salem district.

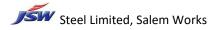
HEALTH – PERMANENT COVID CARE CENTER

Salem district is reporting more number of Covid cases and the district administration is taking all efforts to control the spread and treat every COVID affected patient with utmost care. To tackle the present scenario, we have supported district administration for setting up of permanent 1000 bedded Covid Care Center at Salem District. This intervention is immensely supportive to treat Covid affected patients equally regardless of their economic status. Also this center is helping to mitigate COVID-19 spread.

EDUCATION - LAB MATERIAL

We have supported well equipped Science lab apparatus to St. Charles Matriculation school is located in Tharamangalam and 350 students are studying in school. Recently school got upgraded by the government of Tamil Nadufrom 8th standard to 10th standard. The school is focusing on all – round development of the poor and marginalized children. The school adminstation were not able to purchase science lab apparatus for the development of children. Hence we have supported to students acquire deep understanding of science through high-quality lab equipment.

Sports - Silambam Art



November 27th, 2022, Sunday at Mecheri Boys' Higher Secondary School, the world Novel record on Silambam event took place. In this Novel record event, 1312 students are participated from all over Tamil Nadu. We have supported to distribute the prizes to all participants.

EDUCATION - Anganwadi Wall Painting

Malamanoor Anganwadi center is being accessed by 20 children. The entire anganwadi center is painted with syllabus related concepts.

II ENTERPRIZE SOCIAL COMMITMENT (ESC)

Enterprise Social Commitment (ESC) comitment submitted during Environment Impact Assessment(EIA) Study 2017 to MoEF&CC is given in Table 3

Table 3: Fund Allocation for Enterprise Social Commitment (ESC) as per EC dated 07.07.2017 (Rs. In Crs)

S.No	Description of activities	No's of		Total Rs				
	2000, p. 100, 200, 100, 100	facility	Year I	Year II	Year III	Year IV	Year V	in Crs
1	Toilets	2000	0.5	0.75	0.75	0.5	0.5	3
2	Health center	1	0.25	0.25	0.25	0.25	0	1
3	3 Community hall		0	0.5	0.5	0	0	1
4	4 Hospital		0.5	0.5	0.5	0.25	0.25	2
5	5 Modern school New with GYM and Play ground		0	0	1	0.5	0.5	2
6	Watershed program	1	0	0.25	0.25	0.25	0.25	1
7	7 Water body strengthening/ Drinking water bore well drilling		0	0.25	0.25	0.25	0.25	1
8	8 Drainage		0.25	0.25	0.25	0.25	0	1
9	9 Government school improvement 1			0.25	0.25	0.25	0.25	1
	Total			3	4	2.5	2	13

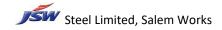
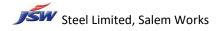


Table 4: The actual amount spent on ESC till June 2020 (Rs. In Crs)

S.No	Description of activities	No's	Year I (Jul'17 to Dec'17)		Year II (Jan'18 to Dec'18)		Year III (Jan'19 to Dec'19)		Year IV (Jan'20 to Jun'20)		Total Rs . (in Crs)	
			Commit ted	Spent	Commit ted	Spent	Commit ted	Spent	Commit ted	Spent	Commit ted	Spent
1	Toilets	2000	0.5	0.32	0.75	0.19	0.75	0.04	0.5	0	3	0.55
2	Health center	1	0.25	0	0.25	0	0.25	0.22	0.25	0.21	1	0.43
3	Community hall	2	0	0	0.5	0	0.5	0	0	0	1	0
4	Hospital	1	0.5	0	0.5	0	0.5	0	0.25	0.25	2	0.25
5	Modern school New with GYM and Play ground	1	0	0	0	0	1	0	0.5	0	2	0
6	Watershed program	1	0	0.24	0.25	0	0.25	0.21	0.25	0	1	0.45
7	Water body strengthening/ Drinking water bore well drilling		0	0	0.25	0.2	0.25	0.2	0.25	0.11	1	0.51
8	Drainage		0.25	0	0.25	0.39	0.25	0.1	0.25	0	1	0.49
9	Government school improvement	1	0	0.47	0.25	0.34	0.25	0.17	0.25	0.02	1	1
Total			1.5	1.03	3.0	1.12	4.0	0.94	2.5	0.593	13.0	3.68

Enterprise Social Commitment (ESC) revised comitment submitted to MoEF&CC dated 26.09.2020 is given in Table 5


Table 5: Revised Fund Allocation for ESC as per letter submitted to MoEFCC (Rs. In Crs)

S.No	S.No Sectors Details		Total Rs in Cr		
			Commitment		
1	Health	Health & Eye Camps to public and school students , Hospital	1.22		
		improvement			
2	Education	School library support , career guidance , sports support , Anganvadi	1.22		
		support, class toppers prize to school students, School Technology			
		improvement			
3	Infrastructure	School and Educational institution infrastructure improvement , village	4.7		
	Development	infrastructure improvement , toilet construction in schools and villages ,			
		village library support , Drainage improvement , road improvement ,			
		water body improvement , desilting of channels, pond and reservoir			
4	Livelihood	Need based training (Eg Tailoring , ARI , Zardoshi) to women , Spoken	1.18		
	support	English training to unemployed youth to increase their employability			
		level, organic training to farmers , agricultural inputs to Farmers ,			
		exposures trips to farmers , sponsorship to farmers for various training			
5	Others	Waste Management support , sports related support in schools and	1		
		Villages, awareness creation programs in schools and villages and other			
		need based activities			
Total in Rs. Crs (shall be spent)					
Total spent Crs. Till June 2020					
Total in Rs. Crs (as the commitment made)					

Total Amount spent on Enterprise Social Commitment (ESC) from July 2020 to March 2022 is given in Table 6

Table 6 ESC spent from July 2020 to March 2022

Cl No	Contour	ESC fund Rs. in Crs		
Sl. No.	Sectors	Committed	Spent	
1	Health	0.13	0.14	
2	Education	0.23	0.01	
3	Infrastructure Development	0.63	0.19	
4	Livelihood support	0.00	0.00	
5	Others	0.00	0.00	
	Total in Crs.	0.99	0.34	

The amount spent on the ESC Spent (Rs.in Crs.) for the period April 2022 to March 2023 is given in the table 7

Table 7: ESC Spent (Rs.in Crs.) for the period April 2022 to March 2023

SI.		ESC Spent (Rs.in Crs.) for the period April 2022 to March 2023						
No.	Description of activities	April – Septe	April – September 22		October – March 23		Total FY 23 (April 22– March 23)	
	Description of decivities	Committed	Spent	Committed	Spent	Committed	Spent	
1	Health	0	0	0.25	0.08	0.25	0.08	
2	Education	0.5	0.5	0.15	0.01	0.65	0.51	
3	Infrastructure evelopment	0	0	0.15	0.08	0.15	0.08	
4	Livelihood support	0	0	0.2	0	0.2	0	
5	Others	0	0	0.25	0.28	0.25	0.28	
	Total in Crs. 0.!		0.5	1	0.45	1.5	0.95	
	ESC spent from 2017 onwards to till March 23	Total					4.97	

ANNEXURE 15 CARBON SEQUESTRATION REPORT

CARBON SEQUESTRATION STUDY REPORT

March -2023

for

M/s. JSW Steel Ltd, Salem Works.

Site Location:

Pottaneri P.O., Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India

by

Green Global Safety Systems

43/7b, Senthil Nagar, Chinna Kodungaiyur, Chennai -600051, Ph: 91-8248885428

A Lead Environmental Pollution Control and Prevention Consultants.

INDEX

SI no	Contents				
	PART A				
I	Preface	3			
II	Introduction				
III	Study Team Profile	6			
IV	Executive Summary	10			
V	Objective of the Carbon Sequestration Study	19			
VI	Scope of the study	20			
VII	Methodology	23			
VIII	Standards	28			
IX	Industry Profile	29			
Х	Study Team Selection	37			
	PART B				
XI	Site Visit	38			
XII	Green Belt Topo maps	43			
XIII	Recommendations	47			
	PART C				
XIV	Acknowledgments	52			
XV	References	53			
	Annexure – I Comprehensive study Report	59			
V/ /T	Annexure – II CPCB Guidelines for Greenbelt development	78			
XVI	Annexure – III Environment celebration activities	80			
	Annexure – IV List of recommended species for further improvement	83			

PART - A

I. Preface

M/s. JSW Steel Ltd, Salem Works, Pottaneri P.O., Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India offered an opportunity to M/s. Green Global Safety Systems, Chennai to conduct the Carbon Sequestration Study to evaluate the Contribution of the trees for carbon Sequestration in their Steel Manufacturing facility. Upon the requirement and the Purchase order issued to us, a Comprehensive study was carried out and the final report is submitted.

Disclaimer

We have performed study on Carbon Sequestration by the Existing Green Belt and the report submitted is not deemed to be any undertaking, warranty or certificate.

Place: Chennai M.MEGANATHAN MIE, DIS, Ph.D Scholar-Safety

Date: 24.06.2023 ME, Environmental Engineering, Lead Auditor –ISO

> 14001: 2015, Accredited Safety Auditor by Govt of Chartered Engineer &

Tamilnadu & Kerala

International PHA Specialists.

II. Introduction

Carbon sequestration

What is Carbon Sequestration :- Carbon sequestration means capturing carbon dioxide (CO_2) from the atmosphere or capturing anthropogenic (human) CO_2 from large-scale stationary sources like power plants before it is released to the atmosphere. As Per CPCB ,India

Once captured, the CO_2 gas (or the carbon portion of the CO_2) is put into long-term storage. CO_2 sequestration has the potential to significantly reduce the level of carbon that occurs in the atmosphere as CO_2 and to reduce the release of CO_2 to the atmosphere from major stationary human sources, including power plants and refineries. There are two major types of CO_2 sequestration: terrestrial and geologic.

Terrestrial

Terrestrial (or biologic) sequestration means using plants to capture CO₂ from the atmosphere and then storing it as carbon in the stems and roots of the plants as well as in the soil.

Geologic

Geologic sequestration is the method of storage that is generally considered for carbon capture and storage (CCS) projects. CCS is the practice of capturing CO_2 at anthropogenic sources before it is released to the atmosphere and then transporting the CO_2 gas to a site where it can be put into long-term storage. (Pacala & Socolow 2004). The rapid urbanization of cities in India has led to over exploitation of natural resources, exponential increase in pollution, and accumulation of greenhouse gases in the atmosphere.

Carbon emission due to deforestation and use of fossil carbon has brought forests to the center-stage of climate change mitigation strategies. As per MoEF (2014), India has a spatial extent of the urban tree cover on 12,790 Km2 (16.40 %) out of the total urbanized area of 77,997 Km2 as on 2013. The National Forest Policy, 1988 envisions average forest and tree cover of 33 % for the plains and 66.66 % for the hilly areas of the country.

There is an urgent need for the planned development of the urban areas to present the picture of green and clean cities with adequate forest & tree cover, parks, lakes, wetlands, urban biodiversity, nature education centers, etc.

M/s. JSW Steel Ltd,Salem Works, Pottaneri P.O. ,Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India have organized for the Carbon Sequestration by Plants and conducted by our team of M/s. Green Global Safety Systems, Chennai.

The detailed report of Carbon Sequestration by Plants is presented in this booklet for M/s. JSW Steel Ltd,Salem Works.

III. Study Team Profile

Lead Environmental Expert

1. NAME AND DESIGNATION:

- ➤ Name : M.MEGANATHAN. ME., MIE., AMIE., DCT., DIS., BOC.,.
- ME –Environmental Engineering
- > Designation : Lead Environment Expert
- ➤ ISO 14001:2015 Lead Auditor –Enironmental Management Systems
- > Expert in Environment Dispersion Modeling –Internationally approved Software

2. RELEVANT QUALIFICATIONS:

- ME-Master of Environmental Engineering
- AMIE in Chemical Engineering
 Diploma in chemical Technology Diploma in Industrial safety
- Accredited safety auditor Govt of India and Tamilnadu
- Competent person of Boilers A CLASS
- > Trained HAZOP Leader Certified by China risk management
- Chartered Engineer by Institution Engineers India

3. WORK EXPERIENCE:

- > Total Year of Industrial Experience : 23 years of Industrial Exposure in Various disciplines.
 - M/S. Madras Chlor-Alkalis Ltd , Chennai.
 - M/S. Southern Chlor-Alkali industries Itd, Manali
 - M/S. Tamil Nadu petro Products ltd, TIDCO, Manali.
 - M/S. Dalmia Cement Bharat Ltd , Trichy
 - M/S. GE Momentive performance materials India pvt Ltd (MNC)
 - M/S. Piramal Pharmaceuiticals ,Ennore,Chennai -68.

4. RESPONSIBILITIES INCLUDED:

Environmental Studies, EIA ,Quantitative Risk Analysis as per the EIA Notification Guidance , Conducted Safety audits, Risk assessments, Training on Safe Handling Chlorine system, Construction safety system, Behavior Based Safety system a modern approach etc.

As Process Safety Specialist we have conducted PHA (Process Hazard Analysis) for two project- Plant erected and commissioned and running with full rated capacity.

4.1 PLANT SAFETY:

- Having Experience in water quality Analysis, Air quality, Confined Vessel Entry, Explosive atmosphere, Ventilation in Lab Hoods analytical equipments and techniques
- > Experienced in Hydraulic testing of Chlorine cylinders and conducting physical and internal inspection of the cylinders and clearance for filling / Rejection.
- > Hydraulic testing of Pipelines after erection and report preparation.
- Experienced in operation and maintenance of Belt conveyors, Screw convey, Bucket elevators, Pipe conveyors and Pneumatic conveyors
- > Working experience in Thermic fluid Heaters of make Thermax Ltd
- > Experienced in Hydrogen fired Boiler of make Thermax Ltd.
- ➤ Having experience in Solvent separation unit in pharmaceuticals and specialty chemical plants
- Working Experience Operation and maintenance of Centrifugal machines

4.2 ENVIRONMENT SAFETY:

- → Activities towards Compliance to the Environmental Statutory Requirements like
 - 1. Consent Order for Existing / Expansion Projects
 - 2. Environmental Clearance from MoEF&CC, CPCB, TNPCB.
 - 3. Environmental Impact Assessment (EIA),
 - 3.1 It Involves Prefeasibility study
 - 3.2 Quantitative Environmental Risk assessment
 - 3.3 Environmental report
 - 3.4 Socio Economic conditions
 - 3.5 Air & water quality modeling
 - 3.5.1 Gaussian Model
 - 3.5.2 Noise Level reports and mapping
 - 3.6 Climatic
 - 3.7 Human Interface study
 - 3.8 Evaluation of Env Impacts
 - 3.9 setting an Environment Management Plan
 - 4. Public Hearing
 - 5. Participation in MoEF & CC Meetings
 - 6. Hazardous and Non Hazardous Chemicals Management,
 - 7. Transportation of hazardous Chlor-Alkali substances
 - 8. Waste management of Solid, liquid and gaseous materials.
 - 8.1 Disposal methods of Haz waste and procedures
 - 8.2 Compliance requirements

5. SPECIFIC TOOLS AND EQUIPMENT USED:

Toolbox Talk, JSA, HAZOP, ENVID, Incident Investigation System, Gas Testing, PTW-Auditing, SCBA, Scaffolding Appreciation, Safe Journey Management, Safe Defensive Driving, Basic Life Support, Fire Warden on Emergency & Evacuation Drills, Fire Extinguisher, Fire Alarm, Fire Hydrant and Automatic Sprinkler system.

6. SPECIFIC STANDARDS USED:

IS 14489, Fact act -1948, Tamilnadu Factories rules 11950 MOEF, CPCB, TNPCB, OSHAS, EPA., RCRA, CERCELA, BIS. National Building Code, Tariff Advisory committee Etc..

7. PROCESS SAFETY MANAGEMENT RESPONSIBILITIES:

In charge of HSE Dept / Process Commissioning for Chlor alkali Plant, LPG, Benzene ,octane, heptane, Methanol, Diesel, and Furnace oil loading and unloading areas, Effluent Treatment Plant, Occupational Health & Training center HSE Achievements. Erection and Commissioning of Automatic Sprinkler system to 100 MT Storage of LPG Bullet (2 Nos) and Fire Hydrant System to petro-chemical and chlor alkali plant at given time schedule on Jan 2002.Basic HSE Induction Training to 2000 Manpower.

8. HSE ACHIEVEMENTS:

- > Number accident free man days maintained up to 12 years continuously
- > 5 star awards
- national safety awards
- consecutive national safety council awards
- > British safety council awards
- > ISO-9001 certificate
- > ISO-14001 :2015 certificate Lead Auditor
- Working with ISO 45001: 2018
- ➤ No of Internal safety audit conducted is approx 200.

9. HSE CERTIFICATES

- ➤ Ist Class Boiler Safety —Insp. Of Boilers-India
- ➤ HAZOP Leader China –RISK MANAGEMENT SOLUTIONS
- DGFASLI Govt of India Trained Safety auditor
- ➤ IRCA accredited LEAD AUDITOR FOR ISO 14001 -2004
- Certified Internal Auditor for ISO 9001
- First aid St john Ambulance Cent Govt of India

10. EHS SOFTWARE KNOWLEDGE:

- Process Hazard Analysis: HAZOP ,FMEA,FTA,SOP-Leader Software (ABS USA)
- Environmental Risk Assessments 3MRA Software EPA (USA)
- Noise mapping Custics software –Spain
- Quantitative Risk estimation ALOHA Software (EPA –USA)
- Piping Pipe flow Expert Software –UK

11. OTHER CERTIFICATES:

- > Safety Training Programme -By Insp.Of. Factories-Tamilnadu-India
- > First Aider St John Ambulance -India
- ➤ Ms-Office- 2000 NIIT India

12. PROFESSIONAL MEMBERSHIPS

- National Safety Council- Member-India
- Safety Engineers Association Member-Tamilnadu
- ➤ Indian institute of Engineers (India)— Associate Calcutta
- Safety Auditors Association of India -SAAI Moderator
- Indian safety Engineers(ISE) Member
- Chartered Engineer In progress with IEI-India
- Industrial Waste management Association Member -2010

Study Team Member ----- 01

- Name : Mr. Vignesh .S Environmental Specialist
- Designation: Study Team member of Green Global Safety System

Study team member ----- 02

G.Balasubrmanian- Environment Assistant

Study Team Member ----- 03

Mr. Prabhakaran p - Environmental Specialist

Study Team Member ----- 04

Mr. Gunasekaran.P - Environmental Specialist

IV .Executive Summary

- ✓ As part of comprehensive Carbon Sequestration by green belt Study Report, M/s. JSW Steel Ltd, Salem Works located at, Pottaneri P.O., Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India, have the commitment and attitude towards the Pollution Control and Prevention management system.
- ✓ Total Carbon Sequestration by the Green Belt is 5699 MT during FY 2022-23. There is an increase in quantity of carbon Sequestration when compared with last financial year and there is a considerable Contribution in carbon sequestration by Tree Plantations at JSW, Salem plant. However, scope for improvement in planting trees is existed.
- ✓ Total Carbon dioxide emission by the integrated steel plant operation in the year 2022-23 is about **28,10,308** MT (Steel Production 11,24,123 MT/year) .
- ✓ Total quantum Carbon Sequestration by the Existing Green Belt in the Year 2022-23 is **5699** MT.
- ✓ Proposed green belt to the FY 2023-24 is 11000 Tree saplings.
- ✓ Organization have been continually striving to control and prevent air pollution by effective implementation of Environmental Management Systems and JSW Salem unit is certified for ISO 14001:2015 standard.
- ✓ Plant have controls over Oxides of nitrogen and sulphur and to a much lesser extent fluorides and chlorides release as they are present in the materials being burnt.
- ✓ Plant have Pollution Prevention system even about 99% of the total fumes and dust generated in steel-making process escape as fugitive emissions whereas slags also lead to release of fumes in the form of iron oxide, kish (graphite), soot and silica.
- ✓ Effective Pollution Control over Coke ovens which are another major source of emissions have been taken care by the organization.

- ✓ Two types of cleaning systems, dry and wet cleaning from hard substances are practiced. In dry cleaning the following control systems are used, viz., inertial dust catchers, cyclones, electro-static precipitators and different types of cloth filters.
- ✓ While in wet cleaning scrubbers, wet cyclones and various kinds of venturis are used. Wet method of gas cleaning is used such production where the cleaning is done from gases containing explosive grade substances.
- ✓ Total Tree plantation as reported by JSW is around 2,62,421 trees since inception till March 2023.

	TREES PLANTED DETAILS -Cumulative									
S.No.	Year	Opening (Nos.)	Tree planted (Nos.)	Cumulative (Nos.)						
1	2004 - 05	94340	100	94440						
2	2005 - 06	94440	1100	95540						
3	2006 - 07	95540	200	95740						
4	2007 - 08	95740	4395	100135						
5	2008 - 09	100135	5940	106075						
6	2009 - 10	106075	5120	111195						
7	2010 -11	111195	14250	125445						
8	2011 -12	125445	7535	132980						
9	2012 - 13	132980	10120	143100						
10	2013 - 14	143100	6645	149745						
11	2014-15	149745	19065	168810						
12	2015-16	168810	10000	178810						
13	2016-17	178810	6050	184860						
14	2017-18	184860	5000	189860						
15	2018-19	189860	14165	204025						
16	2019-20	204025	14830	218855						
17	2020-21	218855	18130	236985						
18	2021-22	236985	15,180	252165						
19	2022-23	252165	10256	262421						

Criteria for number of trees:

✓ Trees having height greater than 4 feet only is considered for sequestration calculation.

	Tree Plantation -From April 2022 to March 2023								
S NO	Date	Location	Number of Shadow Trees	Types of Trees					
1	5-Apr-22	Sinter Plant& Coke oven	30	Jamun Tree					
2	6-Apr-22	BRM Tower Area	2	Idly flower,Guava Tree					
3	6-Apr-22	Safety office	8	Nandiyavattam & Arika Paam Tree					
4	8-Apr-22	WagonTipprer Road Side	25	Plam tree					
5	8-Apr-22	Power Plant -II	40	Guava, Mango, Jack fruit, Nelly Tree					
6	11-Apr-22	SINTER PLANT-II ROAD SIDE	13	Guava, Mango, Nelly Tree					
7	21-Apr-22	WagonTipprer Road Side	25	Guava, Mango, Nelly Tree					
8	22-Apr-22	COKE OVEN AREA	10	Nandiyavattam & Jack fruit Tree					
9	29-Apr-22	Main Gate Road side	5	Guava Tree					
10	2-May-22	NEW LAND AREA	300	Jamun Tree,Jack fruit,Pongam Tree,Mantharai Tree					
11	3-May-22	NEW LAND AREA	400	Jamun Tree,Pongam Tree,Mantharai Tree					
12	4-May-22	NEW LAND AREA	170	Jamun Tree,Pongam Tree					
13	11-May-22	New Land Area	290	Jamun Tree,Pongam Tree,Pathani Tree					
14	16-May-22	Admine	10	Yellow Ribbon,Round Aloe Vera					
15	16-May-22	SinterPlant II	17	Croton, Jamun Tree,					
16	20-May-22	Coke oven area & BRM	25	Jamun Tree					
17	25-May-22	AUDITORIUM Road SIDE	20	Mango, Jack fruit, Nelly Tree					
18	1-Jun-22	Sinter Plant-II Road Side	100	Jamun Tree,Jack fruit,Guava,Mango,Pathani Tree,Pipal Tree					
19	4-Jun-22	BF2 office Road Side	45	Jamun Tree,Jack fruit,Mango,Pathani,Fig Tree					
20	9-Jun-22	New Land	500	Jamun Tree,Pathani,Fig Tree,Pongam Tree					
21	17-Jun-22	New R&D	3	Jamun Tree,Nelly Tree					
22	17-Jun-22	BF2 Road Side	30	Yellow Ribbon, Jamun Tree, Teak tree					
23	1-Jul-22	Coke oven area & Railway crossing	30	Borassus, Yellow Ribben					
24	2-Jul-22	Sinter Plant area	20	Jamun Tree,Borassus, Croton					
25	4-Jul-22	R.O plant	55	Arali flower,Hibiscus					
26	6-Jul-22	BRM	20	Hibiscus,Borassus					

28 14-Jul-22 Scrap Yard Area 20 Borassus 29 15-Jul-22 Power Plant II 50 Borassus, Saraca Indica 30 17-Jul-22 Security Paragon 30 Sembaruthi, Ashoka trees 31 18-Jul-22 BRM Road Side 40 Sembaruthi, Palm trees 32 20-Jul-22 Ro Water to ASP-II Raod side 90 Palm trees, Croton Yellow Ribbon, mango tree, Sembaruthi, ixora flower 33 27-Jul-22 Old R&D 15 Yellow Ribbon, mango tree, Sembaruthi, ixora flower 34 5-Aug-22 Sinter Plant II 53 Pathani Tree, Jack fruit, Jamun Tree, Mango Tree 35 17-Aug-22 Cement Factory 100 Jamun Tree, Pongam Tree, Plam Tree 36 20-Aug-22 Main gate area 45 Croton 37 26-Aug-22 Cement Factory 300 Jamun Tree, Mango, Pala Tree, Biscult Tree, Mango, Tree, Jack fruit Tree 40 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree, Assa Maram, Nelli Tree	27	11-Jul-22	Sinter Plant	50	Jamun Tree, Biscuot Hony Tree
15-Jul-22	28	14-Jul-22	Scrap Yard Area	20	
31 18-Jul-22 BRM Road Side 40 Sembaruthi, Palm trees 32 20-Jul-22 Ro Water to ASP-II Raod side 90 Palm trees, Croton, Yellow Ribbon 33 27-Jul-22 Old R&D 15 Yellow Ribbon, mango tree, Sembaruthi, ixora flower 34 5-Aug-22 Sinter Plant II 53 Pathani Tree, Jack fruit, Jamun Tree, Muntingia calabura Tree, Mango Tree 35 17-Aug-22 Cement Factory 100 Jamun Tree, Pongam Tree, Plam Tree 36 20-Aug-22 Main gate area 45 Croton 37 26-Aug-22 Cement Factory 300 Jamun Tree, Mango, Pala Tree, Biscuit Tree 38 1-Sep-22 BRM 55 Mango Tree, Jack fruit Tree 39 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree 40 5-Sep-22 Security paragon 20 Mango Tree, Jack fruit Tree 41 12-Sep-22 Ball Milagate to temple gate 100 Plam Tree, Jamun Tree, Arasa Maram, Nelli 42 18-Sep-22 Temple gate area 50 Jamun Tree, Arasa Maram, Nelli	29	15-Jul-22	Power Plant II	50	Borassus,Saraca Indica
32 20-Jul-22 Ro Water to ASP-II Raod side 90 Palm trees, Croton, Yellow Ribbon 33 27-Jul-22 Old R&D 15 Yellow Ribbon, mango tree, Sembaruthi, ixora flower 34 5-Aug-22 Sinter Plant II 53 Pathani Tree, Jack fruit, Jamun Tree, Muntingia calabura Tree, Mango Tree 35 17-Aug-22 Cement Factory 100 Jamun Tree, Pongam Tree, Plam Tree 36 20-Aug-22 Main gate area 45 Croton 37 26-Aug-22 Cement Factory 300 Tree, Malanelli Tree 38 1-Sep-22 BRM 55 Mango Tree, Jack fruit Tree 40 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree, Jamun Tree 40 5-Sep-22 Security paragon 20 Mango Tree, Jamun Tree, Jamun Tree, Jamun Tree, Jamun Tree, Jamun Tree, Jamun Mango, Jack Fruit Tree 41 12-Sep-22 BRM Road side 50 Plam Tree, Jamun Tree, Jamun Tree, Arasa Maram, Nelli 42 18-Sep-22 Emple gate area 50 Jamun Tree, Ja	30	17-Jul-22	Security Paragon	30	Sembaruthi, Ashoka trees
33 27-Jul-22 Old R&D 15 Yellow Ribbon,mango tree,Sembaruthi,ixora flower Pathani Tree, Jack fruit, Jamun Tree,Muntingia calabura Tree, Mango Tree 36 20-Aug-22 Main gate area 45 Croton Jamun Tree,Mango,Pala Tree,Biscuit Tree,Malanelli Tree 38 1-Sep-22 Emrh Factory 300 Jamun Tree,Mango,Pala Tree,Biscuit Tree,Malanelli Tree 38 1-Sep-22 Emrh Factory 300 Jamun Tree,Mango,Pala Tree,Biscuit Tree,Malanelli Tree 38 1-Sep-22 Emrh 55 Mango Tree, Jack fruit Tree 39 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree 39 S-Sep-22 Security paragon 20 Mango Tree, Jack fruit Tree 41 12-Sep-22 Maingate to temple gate 100 Plam Tree, Jamun Tree, Arasa Maram,Nelli 42 18-Sep-22 Temple gate area 50 Jamun Tree, Jamun Tree, Arasa Maram,Nelli 44 21-Sep-22 Sinter Plant II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva,Mango,Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI& Jamun Tree,Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree,Mango,Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 Rodo SiDe 10-Oct-22 Cokeoven 100 Plam Tree, Mango Tree,Ashokan Tree 100 Plam Tree, Mango Tree, Ashokan Tree 100	31	18-Jul-22	BRM Road Side	40	Sembaruthi, Palm trees
15	32	20-Jul-22	Ro Water to ASP -II Raod side	90	Palm trees, Croton, Yellow Ribbon
S-Aug-22 Sinter Plant II S3 Pathani Tree , Jack fruit, Jamun Tree, Muntingia calabura Tree, Mango Tree	33	27-Jul-22	Old R&D	15	
36 20-Aug-22 Main gate area 45 Croton 37 26-Aug-22 Cement Factory 300 Jamun Tree,Mango,Pala Tree,Biscuit Tree,Malanelli Tree 38 1-Sep-22 BRM 55 Mango Tree ,Jack fruit Tree 39 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree 40 5-Sep-22 Security paragon 20 Mango Tree ,Jack fruit Tree 41 12-Sep-22 Maingate to temple gate 100 Plam Tree, Jamun Tree,Arasa Maram,Nelli 42 18-Sep-22 Temple gate area 50 Jamun Tree, Jamun Tree,Arasa Maram,Nelli 43 19-Sep-22 BRM Road side 50 Plam Tree, Jamun Tree,Arasa Maram,Nelli 44 21-Sep-22 Sinter PLANT II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva,Mango,Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI & Jamun Tree,Mango Tree,Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree,Mango,Tree 48 6-Oct-22<	34	5-Aug-22	Sinter Plant II	53	Pathani Tree ,Jack fruit,Jamun Tree,Muntingia
37 26-Aug-22 Cement Factory 300 Jamun Tree, Mango, Pala Tree, Biscuit Tree, Malanelli Tree 38 1-Sep-22 BRM 55 Mango Tree, Jack fruit Tree 39 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree 39 5-Sep-22 Security paragon 20 Mango Tree, Jack fruit Tree 39 41 12-Sep-22 Maingate to temple gate 100 Plam Tree, Jamun Tree, Arasa Maram, Nelli 42 18-Sep-22 Temple gate area 50 Jamun Tree, Jamun Tree, Arasa Maram, Nelli 42 18-Sep-22 SINTER PLANT II 95 PANAM TREE, SEMBARUTHI 35 24-Sep-22 Scrap Yard Area 120 Guva, Mango, Jackfruit, nelli 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree, Mango Tree 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree, Mango, Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 Cokeoven 100 Plam Tree New Canteen NaRTH GATE 100 New Canteen NaR	35	17-Aug-22	Cement Factory	100	Jamun Tree,Pongam Tree,Plam Tree
37 Z6-Aug-22 Cement Factory 300 Tree,Malanelli Tree 38 1-Sep-22 BRM 55 Mango Tree ,Jack fruit Tree 39 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree 40 5-Sep-22 security paragon 20 Mango Tree ,Jack fruit Tree 41 12-Sep-22 Maingate to temple gate 100 Plam Tree, Jamun Tree,Arasa Maram,Nelli 42 18-Sep-22 Temple gate area 50 Jamun Tree, mango 43 19-Sep-22 BRM Road side 50 Plam Tree, Jamun Tree,Arasa Maram,Nelli 44 21-Sep-22 SINTER PLANT II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva,Mango,Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI& Jamun Tree,Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree,Mango,Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 ROckoven 100	36	20-Aug-22	Main gate area	45	Croton
39 5-Sep-22 SP-2 100 Plam Tree, Jamun Tree 40 5-Sep-22 security paragon 20 Mango Tree, Jack fruit Tree 41 12-Sep-22 Maingate to temple gate 100 Plam Tree, Jamun Tree, Arasa Maram, Nelli 42 18-Sep-22 Temple gate area 50 Jamun Tree, mango 43 19-Sep-22 BRM Road side 50 Plam Tree, Jamun Tree, Arasa Maram, Nelli 44 21-Sep-22 SINTER PLANT II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva, Mango, Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI & Jamun Tree, Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree, Mango, Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 NEW CANTEEN NARTH GATE ROAD SIDE 100 Plam Tree, Mango Tree, Ashokan Tree 50 10-Oct-22 Cokeoven 100 Plam Tree, Guava Tree, NellieTree, Sapota Tree, NellieTree, Sapota Tree, Pomegranate Tree	37	26-Aug-22	Cement Factory	300	
40 5-Sep-22 security paragon 20 Mango Tree ,Jack fruit Tree 41 12-Sep-22 Maingate to temple gate 100 Plam Tree, Jamun Tree,Arasa Maram,Nelli 42 18-Sep-22 Temple gate area 50 Jamun Tree, mango 43 19-Sep-22 BRM Road side 50 Plam Tree, Jamun Tree,Arasa Maram,Nelli 44 21-Sep-22 SINTER PLANT II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva,Mango,Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI& Jamun Tree,Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree,Mango,Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 REV CANTEEN NARTH GATE ROAD SIDE 100 Plam Tree 50 10-Oct-22 Cokeoven 100 Plam Tree 51 10-Oct-22 BF-II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 Plam Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera, Yellow Ribbon, Chibiscus,Idly flower,Arali ,Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	38	1-Sep-22	BRM	55	Mango Tree ,Jack fruit Tree
4112-Sep-22Maingate to temple gate100Plam Tree, Jamun Tree, Arasa Maram, Nelli4218-Sep-22Temple gate area50Jamun Tree, mango4319-Sep-22BRM Road side50Plam Tree, Jamun Tree, Arasa Maram, Nelli4421-Sep-22SINTER PLANT II95PANAM TREE, SEMBARUTHI4524-Sep-22Scrap Yard Area120Guva, Mango, Jackfruit, nelli4626-Sep-22Coke oven area100SEMBARUTHI& Jamun Tree, Mango Tree473-Oct-22BF-II & TEMPLE22Jamun Tree, Mango, Tree486-Oct-22CANTEEN2Yellow Ribbon & Arasa Maram Tree497-Oct-22NEW CANTEEN NARTH GATE ROAD SIDE100Plam Tree, Mango Tree, Ashokan Tree5010-Oct-22Cokeoven100Plam Tree, Mango Tree, Ashokan Tree5110-Oct-22BF-II Ground Haffer Road side100Plam Tree5211-Oct-22Admin Road Side50Plam Tree5311-Oct-22Cokeoven156Plam Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree5413-Oct-22Ball mill Area65Round Aloevera, Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree5520-Oct-22SMS Lad Area20Plam Tree, Paper Flower, Basil5627-Oct-22EOF Road Side12Areca Palm	39	5-Sep-22	SP-2	100	Plam Tree, Jamun Tree
42 18-Sep-22 Temple gate area 50 Jamun Tree, mango 43 19-Sep-22 BRM Road side 50 Plam Tree, Jamun Tree, Arasa Maram, Nelli 44 21-Sep-22 SINTER PLANT II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva, Mango, Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI& Jamun Tree, Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree, Mango, Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 NEW CANTEEN NARTH GATE ROAD SIDE 100 Plam Tree 50 10-Oct-22 Cokeoven 100 Plam Tree, Mango Tree, Ashokan Tree 51 10-Oct-22 BF -II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 Plam Tree, Nemer Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera, Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	40	5-Sep-22	security paragon	20	Mango Tree ,Jack fruit Tree
43 19-Sep-22 BRM Road side 50 Plam Tree, Jamun Tree, Arasa Maram, Nelli 44 21-Sep-22 SINTER PLANT II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva, Mango, Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI& Jamun Tree, Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree, Mango, Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 ROAD SIDE 100 Panam Tree 50 10-Oct-22 Cokeoven 100 Plam Tree, Mango Tree, Ashokan Tree 51 10-Oct-22 BF-II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 Plam Tree, Guava Tree, Guava Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera, Yellow Ribbon, Chibiscus, Idly flower, Arali, Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	41	12-Sep-22	Maingate to temple gate	100	Plam Tree, Jamun Tree, Arasa Maram, Nelli
44 21-Sep-22 SINTER PLANT II 95 PANAM TREE, SEMBARUTHI 45 24-Sep-22 Scrap Yard Area 120 Guva, Mango, Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI& Jamun Tree, Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree, Mango, Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 ROAD SIDE 100 Panam Tree 50 10-Oct-22 Cokeoven 100 Plam Tree, Mango Tree, Ashokan Tree 51 10-Oct-22 BF-II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 Plam Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera, Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	42	18-Sep-22	Temple gate area	50	Jamun Tree, mango
45 24-Sep-22 Scrap Yard Area 120 Guva,Mango,Jackfruit, nelli 46 26-Sep-22 Coke oven area 100 SEMBARUTHI& Jamun Tree,Mango Tree 47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree,Mango,Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 NEW CANTEEN NARTH GATE ROAD SIDE 100 Plam Tree,Mango Tree,Ashokan Tree 50 10-Oct-22 Cokeoven 100 Plam Tree 51 10-Oct-22 BF-II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 Plam Tree, Mango Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera, Yellow Ribbon, Chibiscus,Idly flower,Arali ,Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower,Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	43	19-Sep-22	BRM Road side	50	Plam Tree, Jamun Tree, Arasa Maram, Nelli
4626-Sep-22Coke oven area100SEMBARUTHI& Jamun Tree, Mango Tree473-Oct-22BF-II & TEMPLE22Jamun Tree, Mango, Tree486-Oct-22CANTEEN2Yellow Ribbon & Arasa Maram Tree497-Oct-22NEW CANTEEN NARTH GATE ROAD SIDE100Panam Tree5010-Oct-22Cokeoven100Plam Tree, Mango Tree, Ashokan Tree5110-Oct-22BF -II Ground Haffer Road side100Plam Tree5211-Oct-22Admin Road Side50Plam Tree5311-Oct-22Cokeoven156Plam Tree, Yellow Ribbon, Pongamia tree, Neem Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree5413-Oct-22Ball mill Area65Round Aloevera , Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree5520-Oct-22SMS Lad Area20Plam Tree, Paper Flower, Basil5627-Oct-22EOF Road Side12Areca Palm	44	21-Sep-22	SINTER PLANT II	95	PANAM TREE, SEMBARUTHI
47 3-Oct-22 BF-II & TEMPLE 22 Jamun Tree, Mango, Tree 48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 NEW CANTEEN NARTH GATE ROAD SIDE 100 Panam Tree 50 10-Oct-22 Cokeoven 100 Plam Tree, Mango Tree, Ashokan Tree 51 10-Oct-22 BF -II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 Plam Tree, Mango Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera, Yellow Ribbon, Chibiscus, Idly flower, Arali, Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	45	24-Sep-22	Scrap Yard Area	120	Guva,Mango,Jackfruit, nelli
48 6-Oct-22 CANTEEN 2 Yellow Ribbon & Arasa Maram Tree 49 7-Oct-22 ROAD SIDE 100 Panam Tree 50 10-Oct-22 Cokeoven 100 Plam Tree, Mango Tree, Ashokan Tree 51 10-Oct-22 BF -II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 Plam Tree, Neem Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	46	26-Sep-22	Coke oven area	100	SEMBARUTHI& Jamun Tree, Mango Tree
497-Oct-22NEW CANTEEN NARTH GATE ROAD SIDE100Panam Tree5010-Oct-22Cokeoven100Plam Tree, Mango Tree, Ashokan Tree5110-Oct-22BF -II Ground Haffer Road side100Plam Tree5211-Oct-22Admin Road Side50Plam Tree5311-Oct-22Cokeoven156Plam Tree, Neem Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree5413-Oct-22Ball mill Area65Round Aloevera , Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree5520-Oct-22SMS Lad Area20Plam Tree, Paper Flower, Basil5627-Oct-22EOF Road Side12Areca Palm	47	3-Oct-22	BF-II & TEMPLE	22	Jamun Tree,Mango,Tree
7-Oct-22 ROAD SIDE 100 Plam Tree 100 Plam Tree, Mango Tree, Ashokan Tree 100 Plam Tree, Mango Tree, Ashokan Tree 100 Plam	48	6-Oct-22	CANTEEN	2	Yellow Ribbon & Arasa Maram Tree
51 10-Oct-22 BF -II Ground Haffer Road side 100 Plam Tree 52 11-Oct-22 Admin Road Side 50 Plam Tree 53 11-Oct-22 Cokeoven 156 tree, Neem Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera , Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	49	7-Oct-22		100	Panam Tree
5211-Oct-22Admin Road Side50Plam Tree5311-Oct-22Cokeoven156Plam Trees, Yellow Ribbon, Pongamia tree, Neem Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree5413-Oct-22Ball mill Area65Round Aloevera, Yellow Ribbon, Chibiscus, Idly flower, Arali, Nandhiyavattam, Plam Tree5520-Oct-22SMS Lad Area20Plam Tree, Paper Flower, Basil5627-Oct-22EOF Road Side12Areca Palm	50	10-Oct-22	Cokeoven	100	Plam Tree, Mango Tree, Ashokan Tree
53 11-Oct-22 Cokeoven 156 Plam Trees, Yellow Ribbon, Pongamia tree, Neem Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree 54 13-Oct-22 Ball mill Area 65 Round Aloevera , Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree, Paper Flower, Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	51	10-Oct-22	BF -II Ground Haffer Road side	100	Plam Tree
5311-Oct-22Cokeoven156tree, Neem Tree, Guava Tree, NellieTree, Sapota Tree, Pomegranate Tree5413-Oct-22Ball mill Area65Round Aloevera , Yellow Ribbon, Chibiscus, Idly flower, Arali , Nandhiyavattam, Plam Tree5520-Oct-22SMS Lad Area20Plam Tree, Paper Flower, Basil5627-Oct-22EOF Road Side12Areca Palm	52	11-Oct-22	Admin Road Side	50	Plam Tree
54 13-Oct-22 Ball mill Area 65 flower,Arali ,Nandhiyavattam, Plam Tree 55 20-Oct-22 SMS Lad Area 20 Plam Tree,Paper Flower,Basil 56 27-Oct-22 EOF Road Side 12 Areca Palm	53	11-Oct-22	Cokeoven	156	tree, Neem Tree, Guava Tree, NellieTree, Sapota
56 27-Oct-22 EOF Road Side 12 Areca Palm	54	13-Oct-22	Ball mill Area	65	•
	55	20-Oct-22	SMS Lad Area	20	Plam Tree,Paper Flower,Basil
57 27-Oct-22 Power Pland -II 5 Jamun Tree	56	27-Oct-22	EOF Road Side	12	Areca Palm
	57	27-Oct-22	Power Pland -II	5	Jamun Tree

58	27-Oct-22	Power Pland -II	5	Pongamia Tree	
59	2-Nov-22	Safety Office	4	Areca Palm Tree	
60	4-Nov-22	BF 2	10	Palm Tree	
61	8-Nov-22	TOWNSHIP	400	Jamun ,Pongam,Mango,Pathani Tree	
62	10-Nov-22	Township	450	Palm Tree,Jamun,Pongam,Mango,Pathani,Lemon Tree	
63	11-Nov-22	Township	225	Palm Tree,Jamun,Pongam,Mango,Pathani,Lemon Tree,Mahua Tree	
64	14-Nov-22	Town Ship	200	Palm Tree, Jamun, Pongam, Mango Tree, Ashoka Tree	
65	14-Nov-22	Cokeoven&Admin	100	Sembaruthi flower& Ashoka,Palm Tree,Lemon,Chaste Tree,	
66	15-Nov-22	Ball mill Area & R&D	4	Yellow Ribbon & Chaste Tree	
67	16-Nov-22	Ball mill Area	2	Yellow Ribbon, Sembaruthi, Oosi AloeVera, Nanthiya Vattai & Mango Tree	
68	16-Nov-22	Town Ship	200	Jamun,Pongam,Pathani Tree	
69	25-Nov-22	Temple	10	Sembaruthi flower& Lemon Tree,	
70	25-Nov-22	BF 2	3	Croton,Sembaruthi,Allamanda Plant ,Coconut Tree	
71	25-Nov-22	NEW LAND AREA	85	Jamun,Pongam,Mango Tree	
72	26-Nov-22	Main Gate Road Side	20	Chaste Tree,	
73	1-Dec-22	Main Gate &Tample Gate	57	Papaya Tree & Sembaruthi	
74	2-Dec-22	Guest House	10	Papaya Tree	
75	8-Dec-22	BF-II	150	Bamboo Tree	
76	9-Dec-22	Wegon Tippler	65	Bamboo Tree	
77	12-Dec-22	Temple Gate	6	Coconut Tree	
78	13-Dec-22	Main Gate Pinex Area	102	Bamboo Tree	
79	13-Dec-22	BF-II & Sinter Plant -II	53	Hibiscus, Arali, Bamboo Tree	
80	19-Dec-22	BRM cooling Tower	58	Coconut Tree+Arali+Nanthiya Vattai+Hibiscus+Yellow Ribbon	
81	20-Dec-22	BRM cooling Tower	15	Yellow Ribbon+Hibiscus+Arali+Nanthiya Vattai+Palm Tree	
82	27-Dec-22	Power Plant	9	Lemon Tree+Hibiscus+Mango+Fetus+Narcissu mando+Hibiscus	
83	29-Dec-22	Old R&D Road & OHC	75	Rose + Plam Tree +Coconut Tree	
84	29-Dec-22	Sinter Plant	40	Narcissu mando+Guava Tree+Mango Tree	
85	29-Dec-22	Anneling Road Side	130	Gooseberry Tree+Java Plum+Guava+Pathani+Great Fruit Tree	
86	28-Dec-22	Main Gate Road Side New Land	150	Guava Tree+Gooseberry Tree+Pathani+Great Fruit Tree+Pongamia Tree	

87	29-Dec-22	Town Ship	165	Pathani Tree+Gooseberry Tree+Guava Tree+Guava Tree+Great Fruit	
88	02.01.2023	CPP2	150	Guava Tree+Amla+Pathani	
89	03.01.2023	Sinter Plant	460	Badam Tree+Jamun+Mahogany	
90	06.01.2023	BF	25	Mahogany Tree,Badam Tree,nelli	
91	10.01.2023	Temple gate area	50	Pungan,nelli,jamun,	
92	12.01.2023	R&D Road side	20	Pungan,nelli,jamun,	
93	17.01.2023	Sinter plant II	80	mango,nelli,pungan	
94	20.01.2023	Coke oven area	60	Guava Tree	
95	23.01.2023	Main Gate	280	Pathani Tree,mango,nelli,jamun	
96	25.01.2023	ANNEALING PLANT	55	Jamun Tree	
97	27.01.2023	BLM	25	Pungan	
98	01.02.2023	Blooming Mill	80	Guva, Sapotta, Gooseberry, Lemon, Mango, Jamun Fruit (Naval)	
99	02.02.2023	Civil Office	43	Padam,Jamun Fruit(Naval),Mahogany	
100	02.02.2023	Sinter Plant	45	Lemon,Jack Fruit	
101	03.02.2023	Blooming Mill	40	PadamPanai (Borassus)	
102	06.02.2023	CCM-3	85	Guva,Jamun Fruit(Naval),Panai (Borassus),Coconut	
103	07.02.2023	BF-2	285	Bamboo,Guva,Jamun Fruit(Naval),Mahogany	
104	08.02.2023	Main Gate	125	Jamun Fruit(Naval), Mahogany, Guva	
105	09.02.2023	СОР	595	Bamboo	
106	17.02.2023	HR Office	30	Lemon,Banana Tree	
107	20.02.2023	Blooming Mill	95	Arya Farm, Water Apple, Guva, Jack Fruit, Mango	
108	21.02.2023	CPP-1	10	Guva	
109	21.02.2023	BRM	35	Jamun Fruit(Naval),Padam,Pongan	
110	25.02.2023	Blooming Mill	30	Goosberry	
111	01.03.2023	New Land Area	25	Jamun Tree,Gooseberry Tree	
112	04.03.2023	Main gate	20	Guava Tree	
113	05.03.2023	Yard Area	75	Pathani Tree,Pungam,Mahogany Tree	
114	10.03.2023	New HR Office	10	Jackfruit Tree	
115	11.03.2023	SPP -II Area	15	Jamun Tree	
116	13.03.2023	BRM	50	Gooseberry Tree, Mahogany Tree, Guava Tree	
117	15.03.2023	Coke Oven	30	Jamun Tree, Guava Tree, Mahogany Tree	
118	18.03.2023	New R&D	15	Lemon Tree,Sweet Lemon	

119	19.03.2023	HR Office	5	Jackfruit Tree	
120	21.03.2023	New Land Area	70	Jamun Tree, Gooseberry Tree, Pathani Tree	
121	23.03.2023	СОР	34	Pungam,Mahogany Tree	
122	25.03.2023	SP	20	Guava Tree	
125	29.03.2023	New Land Area	50	Pungam	
126	30.03.2023	New Land Area	23	Gooseberry Tree	
		Total Tree sapling for FY 23	10256		

GREEN BELT DEVELOPMENT WITH RESPECT TO AREA COVERAGE

Green Belt developed area in percentage					
Sl.no	Location	Green belt cover area in Hectares	Sapling in Nos (Approx)		
1	JSW canteen beside area	10.96	34784		
2	Old Guest House area	6.16	19065		
3	Raw material Yard (BF & SP)	7.6	25975		
4	Water Reservoir Area	11.72	35128		
5	Wagon Tippler area	1.2	3307		
6	Coal Yard area (COP)	0.27	825		
7	Coal Yard area	0.32	803		
8	Temple area	3.16	8546		
9	Back side of canteen (New land area)	12.9	35129		
10	Mills area	7.01	18630		
11	Township	10.54	29907		
12	Power plant (CPP#II)	7.36	20786		
13	Miscellaneous	12.08	29536		
	Total Area coverage by Green Belt	91.28			
	Total Area available (Ha)	268.08			
	Total plant area available (Ha) Steel * CPP#2	237.28			
	Greenbelt developed (%) total land area(268.08 ha)	34.05			
	Total planted trees as on March 2023		262421		

V. Objective of the Carbon Sequestration by Trees

- > To evaluate the amount of carbon sequestrated by the green belt in M/s. JSW Steel Ltd, Salem Works located at, Pottaneri P.O., Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India.
- > To carry out a study on Carbon Sequestration by Trees

VI. Scope of the Study

Carbon dioxide (CO₂) is the prime cause of global warming. The levels of CO₂ in the earth's atmosphere are rising ever since the industrial revolution begun. Even today in India, most of the industries rely heavily on coal as their source of energy. Most of us are still concerned only with acquiring energy, irrespective of methodology involved. CO₂ produced in the form of flue-gases is released without appropriate treatment which is adversely affecting the environment. A range of actions that need to be undertaken includes Carbon Dioxide Capture and Sequestration (CCS) Technology. CCS is a process of separation of CO₂ from Large Point Sources (LPSs), transport to a storage location, followed by long-term isolation from atmosphere. A portion of desired depletion can be achieved by improving energy efficiency owing to technological advancements, and the remainder might be achieved by moving on to renewable energy resources. In India, along with population explosion, there is rise in temperature due to global warming and to cope with the levels of CO₂, we need to see what kind of technological options we have to solve the problem. The paper brings about the study of CCS, its advantages, cost effectiveness and related drawbacks in India.

Capturing CO₂: CO₂ finds its way into the atmosphere in numerous ways. In India, most of it is emitted by large stationary sources and rest by mobile sources in comparatively smaller quantities. These emissions are mainly from the combustion of fossil fuels, dominantly coal, used for power generation, industrial processes, and the other fossils fuels used in transportation, residential and commercial buildings. CO₂ is also emitted during certain industrial processes like cement manufacture or hydrogen production and during combustion of biomass. The main purpose of capturing is to produce a concentrated stream of CO₂, so that it can be transported to storage sites at high pressures.

The reason for concentrating the CO₂ stream is to make it economically feasible. Transportation of CO₂ in dilute form would make it unrealistic and impractical in context of the required capital. The main application of CCS is at the large stationary sources as capturing CO₂ directly from small and mobile sources has so far proven to be very complicated and expensive too. The capture directly from atmosphere would not be discussed in the paper as the concentration is less in ambient air (around 380 ppm) by a factor of 100 times as compared to flue gases. Minimization of emissions from these large point sources can have a drastic impact towards lowering the CO₂ levels. Capture from industrial process streams

- Post-combustion capture
- Pre-combustion capture
- Oxy-fuel combustion capture
 - To conduct the Carbon Sequestration by Plants in the M/s. JSW Steel Ltd,Salem Works located at,Pottaneri P.O.,Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India and the general List of areas in the factory premises are as follows
- > Boundaries of the plant
- Wagon tippler
- Water reservoir area
- JSW Power Plant
- R&D Blocks
- Admin Building
- Old Gust House Area
- Canteen area
- > Plant units

- Road sides
- > Temple Area
- > Non Recovery Type Coke Oven Plant
- > Sinter Plant
- Blast Furnace
- > Steel Making
- > Air Separation Plant
- > Steel Refining
- > Continuous Casting of Billets and Blooms
- Bar and Rod Mill
- Blooming Mill
- ➢ QAD
- Captive Power Plant (3 x 30 MW)
- > Utilities Boilers, Water treatment, ETP, STP, Cooling water, Air compressors etc.
- > HR and Admin building
- Purchase and Logistics buildings
- > Accounts and Finance building
- Occupational Health Center -building

VII. Methodology

The following sequence of the methodology is adopted to conduct the Carbon Sequestration by Plants

The given study is an amalgamation of the literature review, Site visits, qualitative and Quantitative analysis of the data on spatial coverage of the green cover in the study area and its respective carbon sequestration potential. Based on the above findings, the study recommends percentage achievable area under tree cover through appropriate policies, plans.

1.Pre Study

- On the requests from M/s. JSW Steel Ltd,Salem Works located at, Pottaneri P.O.,Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India., Our Study team sent a questionnaire.
- 1.2 Study plan was prepared and sent to the client.

2.Site Visit

- 2.1 Our team conducted a site visit after the opening meeting with the Environmental Department team.
- 2.2 Opening meeting happened in the presence of EHS Head
- 2.3 After the Opening meeting, site Study was conducted by our team at Site
- 2.4 Site Study of Carbon Sequestration by Plants was done as per the scope of work

3.Post Study

- 3.1 Closing meeting were conducted and inputs were taken for further Analysis and Study by our team. Report sent to the management
- This is the final report presented to M/s. JSW Steel Ltd,Salem Works located at Salem.

Methodology- Comprehensive

The rate of carbon sequestration depends on the growth characteristics of the tree species, the conditions for growth where the tree is planted, and the density of the tree's wood. It is greatest in the younger stages of tree growth, between 20 to 50 years. Further complicating the issue is the fact that far less research has been done on tropical tree species as compared to temperate tree species.

Nevertheless, we can roughly estimate the amount of CO₂ sequestered in a given tree, and if we divide by the tree's age, get a yearly sequestration rate.

We got this process from two educational websites who had conceived it as a learning activity for their students.

This is the process:

- 1. Determine the total (green) weight of the tree.
- 2. Determine the dry weight of the tree.
- 3. Determine the weight of carbon in the tree.
- 4. Determine the weight of carbon dioxide sequestered in the tree
- 5. Determine the weight of CO₂ sequestered in the tree per year

Determine the total (green) weight of the tree

Based on tree species, the algorithm to calculate the weight of a tree is:

W = Above-ground weight of the tree in pounds

D = Diameter of the trunk in inches

H = Height of the tree in feet

For trees with D < 11:

 $W = 0.25D^2 H$

For trees with D >= 11:

 $W = 0.15 D^2 H$

Depending on the species, the coefficient (e.g. 0.25) could change, and the variables D2 and H could be raised to exponents just above or below 1. However, these two equations could be seen as an "average" of all the species' equations.

The root system weighs about 20% as much as the above-ground weight of the tree. Therefore, to determine the total green weight of the tree, multiply the above-ground weight of the tree by 120%.

Determine the dry weight of the tree

This is based on an extension publication from the University of Nebraska. This publication has a table with average weights for one cord of wood for different temperate tree species. Taking all species in the table into account, the average tree is 80 % dry matter and 20 % moisture. Therefore, to determine the dry weight of the tree, multiply the weight of the tree by 80%.

Determine the weight of carbon in the tree

The average carbon content is generally 50% of the tree's total volume. Therefore, to determine the weight of carbon in the tree, multiply the dry weight of the tree by 50%.

Determine the weight of carbon dioxide sequestered in the tree

CO₂ is composed of one molecule of Carbon and 2 molecules of Oxygen.

The atomic weight of Carbon is 12.001115.

The atomic weight of Oxygen is 15.9994.

The weight of CO_2 is C+2*O=43.999915.

The ratio of CO_2 to C is 43.999915/12.001115=3.6663.

Therefore, to determine the weight of carbon dioxide sequestered in the tree, multiply the weight of carbon in the tree by 3.6663

Determine the weight of CO₂ sequestered in the tree per year

Divide the weight of carbon dioxide sequestered in the tree by the age of the tree.

EXAMPLES

Estimated growth rates and sizes of agroforestry trees were taken from the World Agroforestry Centre's "Agrofores tree Database"

Let's see how much a Calliandra calothyrsus might sequester in a year. A 10-year-old Calliandra would probably grow about 15 feet tall with a trunk about 8 inches in diameter.

Therefore:

 $W = 0.25D^2 H = 0.25(8)^2(15) = 240 lbs. green weight above ground.$

240 lbs. * 120% = 288 lbs. green weight (roots included)

288 lbs. *80 = 230.4 lbs. dry weight

230.4 lbs. * 50% = 115.2 lbs. carbon

115.2 lbs * 3.6663 = 422.4 lbs. CO_2 sequestered

422.4 lbs / 10 years =42.2 lbs. CO₂ sequestered per year

Or consider a 10-year-old Grevillia robusta, 45 feet tall with a trunk 6 inches in diameter.

Using the same calculations as above, the amount of CO_2 sequestered would be 71.3 lbs. per year.

Or a newly-planted Acacia angustissima, 2.5 years old, 15 feet tall with a trunk 3 inches in diameter: 23.8lbs. of CO₂ sequestered per year.

Or an Albizzia lebbek, 15 years old, 30 feet tall, with a 12 inch trunk: 76.0lbs. of CO₂ sequestered per year.

Note: Reference from the below site

This research and methodology is based on research papers, university publications, and other information freely available on the Internet. As we stated before, it is difficult to calculate the amount of carbon dioxide sequestered per tree per year due to the complexity of the variables involved, as well as the lack of research on tropical tree

species. If you have any information that could further refine or enhance our calculations, please let us know at info@treesftf.org.

Other methods

Another way to estimate the amount of CO_2 sequestered by a tree in a year is to estimate the amount sequestered in a hectare per year, and divide that amount by the number of trees per hectare. Scanning around on the Internet, it seems that the number of trees per hectare (in agroforestry and/or industrial plantations) ranges from under 500 to over 2,000. According to Myers and Goreau, tropical tree plantations of pine and eucalyptus can sequester an average of 10 tons of carbon per hectare per year. Therefore, the plantation can sequester an average of 20,000 lbs * 3.6663 = 73,326 lbs CO_2 /ha/year, or, taking an average of 1,000 trees per hectare, 73.326 lbs CO_2 /tree/year.

Of course, we heavily discourage the planting of pine and/or eucalyptus in our agroforestry systems. Our trees may not grow as fast or as straight as eucalyptus, but they are not invasive, and they do not destroy the water table and the soil!

Disclaimer

This research and methodology is based on research papers, university publications, and other information freely available on the Internet. As we stated before, it is difficult to calculate the amount of carbon dioxide sequestered per tree per year due to the complexity of the variables involved, as well as the lack of research on tropical tree species.

VIII. Standards

- As per the CPCB Guidelines, Green belt shall be developed in an area equal to 33% of the plant area with a native tree species in accordance with CPCB guidelines. The greenbelt shall inter alia cover the entire periphery of the plant.
- ➤ The project proponent shall prepare GHG emissions for the plant and shall submit the programme for the reduction of the same including carbon sequestration including plantation. The guideline is attached as **Annexure –II** of the report.

IX. Industry Profile

Manufacturing Process

1.0 Introduction

JSW Steel Limited, Salem Works is a continuous process industry. The Production capacity of finished products at present is 1.15 million TPA special alloy steel.

Iron complex consist of 2 nos of Blast Furnaces with the production capacity of 1.05 MTPA,1 no of 2 strand Pig Casting Machines and 2 nos of Sinter Plants with production capacity of 1.235MTPA and Coke Oven Plant of 0.5 MTPA capacity.

Steel Melting shop consisting of 2 nos of Energy Optimizing Furnaces (each 65 T/ladle), 4 nos of Ladle Furnaces (each 65 T/ladle), 2 no of Vacuum Degassing Unit, 2 nos. of 3 strand Continuous Billet Casters, 1 no of 3 strand Continuous Bloom casters. Steel finishing shop consisting of Bar and Rod Mill (BRM) with the capacity of 0.48 MTPA and Blooming Mill capacity of 0.48 MTPA. and wire rod block. BRM has downstream operations of Annealing, pickling and peeled & ground unit. The downstream operations are based on supplier needs.

In addition to the above plants, there are 2 nos of Air Separation Plants, 1 no 7 MW and 3 Nos of 30 MW (97 MW) Captive Power Plants, 1 no Pulverizing Coal Injection Plant, 1 no Lime Calcining Plant and MRSS, utilities are installed as support functions. The main products of the plants are pig iron, steel billets/steel blooms, steel bars rods and coil.

Raw Materials Storage

The raw materials, namely, iron ore, coke, manganese, limestone, dolomite and quartzite will come from different sources such as Bellary-Hospet area, Salem area, Sandur belt of Bellary-Hospet area by rail/road. Some raw materials are imported from Australia and /or china. They will be stacked in the raw material storage yard, transported by conveyor system to the storage bunkers. These materials shall be fed in required proportion for Sinter Making, Iron Making and Steel Making etc.

Wagon tippler

JSW Salem has installed a unique design of Wagon tippler first of its kind in Indian, which has the facility to form empty rake parallel to the loaded rake, with a uniquely designed Traverser which shifts empty wagon from inhaul to outhaul line.

The JSW Wagon tippler is designed by M/s Metso minerals India pvt.ltd. Wagon tippler is designed for handling 140 MT (includes wagon weight) with cycle time of 144 seconds per wagon. The installed capacity can evacuate material up to 1600MT per hour.

Wagon Tippler also has a specially designed side pad with articulated movement by which even the bulged wagons also can be handled.

Non Recovery Type Coke Oven Plant

The Coke Oven Plant will use stamp-charging technique to increase the bulk density of the coal, which will be charged to the oven. This will increase the yield and increase the strength of coke. The Coke Oven operation completely automatic and the process of carbonization of coal being controlled.

Carbonization of coal shall be completed in 65 hrs at temperature range of 1100-1300 C. On completion of the process the coke shall be discharged from the oven into the quenching car which will be quenched in the quenching tower. Subsequently the coke will be cut to the specified size, screened and transferred to Blast Furnace. The fines i.e. coke breeze shall be used in Sinter Plant for Sintering Making. The small amount of solid waste generation from the Coke Oven is being reused in the Sinter Plant. The waste heat of the flue gas will be fully utilized by Waste Heat Recovery Boilers for power generation.

Sinter Plant

The iron ore fines, coke fines, lime stone fines and other raw material fines dusts which cannot be used in the Blast Furnace are processed in the plant at a temperature of about 1200 C, by burning fuel. Sintering is a process of agglomeration of fines by incipient fusion in to porous lumps called Sinter which is an ideal input for Blast Furnace.

The sinter plant is essentially an assembly of pallets with grates moving with the help of sprocket wheel and chain table. The hearth layer passes through an ignition hood where it gets ignited by burning furnace oil/Blast Furnace Gas. Wind boxes are provided below

the sinter bed for suction of air to effect uniform burning of sinter bed along the cross section. The suction is maintained by fans. The strand is provided with necessary sealing to prevent air leakage between pallets and the machine.

The hot sinter cakes are broken by a sinter breaker and passed through sinter cooler strand where the hot sinter is subjected to cold air below. This cold sinter is crushed in roll crusher and screened in three stages. The sinter having size less than 5mm is conveyed to the sinter return bin in the stock house of sinter plant. Sinter of size 20-50mm is taken to the stock house of the blast furnace. Sinter of intermediate size of 10-20mm is taken to the sinter machine to serve as a bed layer.

Blast Furnace

In this furnace sintered iron ore, lump iron ore along with fluxes are reduced with metallurgical coke at a temperature of around 1400 C to produce hot metal and slag. The slag gets granulated while tapping. The hot metal tapped is ready for either steel making or making pig iron in a pig casting machine.

The blast is heated up by high-pressure air through hot blast stoves. As the burden descends, the hot gases rise upwards. During the process operation, chemical reactions take place at different levels, specific temperature and gas composition. The reactions are confined mainly to the oxides of iron and carbon wherein deposition begins at 250 C.

The product (hot metal) from the Blast Furnace is then transported to Steel Melting Shop to purification and if any downstream operations down then hot metal will be transferred to pig casting machine. The cold pig iron from the pig casting machine will be sent to the storage yard.

Steel Melting Shop

The Energy Optimizing Furnace (EOF) process is essentially oxygen steel making process in which oxygen is injected into the furnace both above and below the surface of the molten bath.

The oxygen that reacts with the carbon present in the hot metal produces carbon monoxide, which again gets oxidized to carbon dioxide with the liberation of heat by

burning with oxygen above the bath. The temperature in the bath will be maintained within 1650 -1700 C. Fuel heating provision is provided in case the bath gets cooled.

The hot metal from Blast Furnace will be transported to EOF in ladle by diesel loco operated hot metal transfer car. The hot metal will be received at the hot metal bay and then poured in the EOF with help of hot metal charging crane.

Processed scrap will be brought from scrap yard to EOF in scrap charging box (15-20 %) and then will be charged to EOF. Other fluxes and additives will be stored in over storage bunkers and will be added in EOF as per the process requirement.

The steel making operation, two other supporting plant facilities will be needed

- (I) Lime Calcimining Plant for providing burnt lime
- (II) Air Separation Plant for providing oxygen to the steel making furnace

Air Separation Plant

An air separation plants have been installed to provide oxygen for steel making furnace. The air separation plants have the provision to produce argon and nitrogen required for steel making/refining operation.

Steel Refining

From EOF, liquid steel will be tapped into steel teeming ladle placed on a self-propelled steel transfer car and the liquid steel in the ladle will be placed on steel vessel for processing in LRF.

Crude steel obtained from EOF will be taken to the Ladle Refining Furnace (LRF) for adjustment of steel chemistry by addition of Ferro-alloys. The LF has been provided with water-cooled hood and electric arc heating devices for the adjustment of steel chemistry in the LRF.

An online argon rinsing stand is provided in the secondary refining aisle and it is envisaged that all the plain C-steels (i.e. re-bars etc.) will be burged in the argon rinsing stand and then moved to the Continuous Casting Machine (CCM) for making billets. In the Ladle Furnace necessary secondary metallurgical treatments will be carried out to

take care of proper temperature and composition of steel required for the casting of different grades of steel as per product-mix. The LF has been equipped with a fume

extraction system consisting of ducts bag filters, chain conveyor and silo for necessary de-dusting.

Continuous Casting of Billets and Blooms

The refined steel is brought from Ladle Furnace in steel teeming ladle to continuous casting machine to make steel billets and blooms. The casters are provided with three strand casters with secondary water cooling system, auto-touch cut off unit, bottom bed dummy bar system, cooling bed, tundish, mould, and segment preparation facilities.

Bar and Rod Mill

The billets will be transported to rolling mill billet transfer car/crane to billet storage and conditioning Bay of bar and rod mill. Mild steel billets will be stored and the alloy steel billets will be conditioned (i.e. ground and inspected).

Billets will than be loaded in to billet charging grid of the bar and rod mill. From there, billets will proceed to 2 nos. of 45t/hr. rapid re-heating furnaces. After discharge from the furnace at a temperature of 1200-1300 C, the billets will be descaled in a descaler and will be rolled in a 3-high mill strand. After this, the billets will further rolled in 18-strands of bar mill for production of bars of 13-55mm diameter going to cooling bed and for rods 12-34mm diameter going to garret coilers.

With the help of another 4 strands, rods 5.5 -16 mm diameter will be produced and will be cooled in Eden borne coilers. From cooling bed, the rolled bars will proceed to a cold shear where these will be cut to commercial lengths and then collected for bundling and tying.

From coilers, the rod coils will proceed via flat conveyor and hook conveyor to coil collecting capstan. Finishing facilities like straightening, annealing, bright bar grinding, shot blasting, inspection benches etc. are provided for further treatment of rolled bars.

Blooming Mill

The Reversible Blooming Mill is designed to produce heavy rounds and square in the range of 60 - 180 mm as finished/semi-finished product for re-rolling.

The raw material as input to the mill shall be continuously cast blooms from Steel Melt Shop. The bloom sizes available will be:

- i) 250 x 250 mm
- ii) 340 x 400 mm

Depending on quality requirement of the customer, appropriate size of bloom shall be selected for each size of the product. The manufacturing process flow sheet is enclosed.

Captive Power Plant (1 x 7 MW and 3 x 30 MW)

The heat energy of the fuel on combustion used to generate super heat steam in the boilers. The steam is made to run the steam turbine, which coupled, to turbo generator. The rotation of the shaft of turbo generator, produces the current in the coil of the generator, which drawn out as energy.

As the whole, CPP have energy converting systems in series; starting with heat energy into electrical energy, as final end product and the CPP is for a total power generation capacity of 90 MW; will have five parallel units, each having 30 MW capacity.

The CPP (3x30 MW) have necessary utilities like Cooling Tower, Power house, Compressor, water treatment and transportation systems, transformer bay etc., as common for both the power generation units.

To generate 90 MW power, steam is getting through one number of AFBC boiler (127 TPH) using coal as fuel, Five numbers of WHRB (45 TPH 2 Nos,31.5 TPH 2 Nos and 25 TPH 1 No) using COP gas (sensible heat) and One number BFG boiler (32 TPH) using BF gas for combustion.

Coal Based boiler

Coal based (AFBC) boiler make use of imported coal for the reasons off low ash and content; If imported coal is not available, happen at times, then the coal is essentially a washed one at the source of mine, namely, beneficiated coal drawn from the mines of JSW, one of the major shareholder of JSW. The beneficiated coal is less in ash and having low sulphur (< 1 %) content.

The major unit operations are:

- 1. Atmospheric Fluidized Bed Combustion (AFBC) boiler.
- 2. Coal storage and handling system

The major, specific utility for this coal – based CPP is the coal handling mechanical systems for storage and transportation and closed Mechanical Conveyor systems for coal transfer to prevent fugitive dust emission during coal transfer had been installed.

The Fly ash handling systems are specifically designed for better collection of fly ash from ESP and bottom ash from furnace, to destinations, through dense phase Pneumatic conveying systems. The ash collection point has been provided with closed mechanical transfer system to load the ash in trucks for transportation.

AFBC Boiler

The atmospheric fluidized bed combustion is state of the art Clean-Coal combustion technology for ensuring the complete combustion of the coal.

The AFBC boiler for CPP has the following processes and characteristics

- a) It is Bubbling Bed type
- b) Gas temperature in the boiler is 820 to 840 deg C
- c) Provision is available to project limestone into the furnace to capture sulphur and remove it as a dry by-product.
- d) Reduces the level of NOx emission by 90-95 %

Steam generation will be 127 TPH at 88 bar atmospheric pressure and at 520 C of super heat temperature and provided with a tall RCC stack for 80m height with ID fan and Electrostatic Precipitator for emission control. Ash collection systems are provided at the bottom of the ESP facility.

Coke Oven Gas/Blast Furnace gas fired boilers

In gas based system the waste heat from coke oven flue gases (COFG) from the Coke Oven Plant and the excess Blast Furnace Gas (BFG) is utilized for power generation. The non-recovery type of coke ovens are environmentally safe and waste heat recovery from these coke oven is inherently uncertain and is not prevalent. In this project activity 243,277 Nm3/hr of coke oven flue gases generated from coke oven batteries at 1050 deg C is utilized for power generation by sensing/recovering the waste heat through the boilers natural circulation single drum Waste Heat Recovery Boilers having a main stream

pressure at 94 kg/cm2. In this Boiler there are three Economizers which help to recover the waste heat from the flue gas which in turn increase the efficiency of Boilers.

Also the Blast Furnace at Steel Plant, having a hot metal production capacity of 1.05 Million TPA will generate 36000 Nm3/hr of BF gas in excess, after in-house consumption. This excess BF gas which otherwise would have been flared will be utilized for power generation by installing a 32TPH single drum Blast furnace gas fired boiler having a main stream pressure at 94 kg/cm2.

The gas is burnt in the furnace of the boiler. The walls of this furnace are water tubes welded to each other. The water circulated through the water wall tubes absorb the heat and converted in to steam. The water – steam mixture goes to the steam drum where the steam is separated. The process of passing through super heater tubes arranged within the furnace leads to the super heating of the steam. This high pressure and high temperature steam is rooted to a steam turbine. The thermal energy is converted in to mechanical energy by expansion of steam (through reduction in its temp & press) in the turbine. This rotational energy is used drive the generator which produces electricity. The combined steam from WHRB (5 nos.) and BF Gas fired boiler are taken through a main steam line and admitted to Steam turbine for power generation. A steam common header is provided (AFBC and other boilers steam is connected) before entering to steam turbines where is a flexibility to utilize steam to at both turbines invariable with steam generation at any boiler. In view of environmental prospective to minimize fossil fuel consumption power is being generated about 70 % through gas based by maximizing the utilization of COP, BF.

X. Study Team Selection

Our Study team is selected in such way that the competency level in hands on expertise in Carbon Sequestration Study of Iron and steel manufacturing operations and presenting suitable recommendations.

Our team comprises of

Mr.M.Meganathan - Lead Environment Expert

Mr. Kamalakannan - Team member

Mr. Vignesh - Team member

Mr. Sivnesh Mani - Team member

Mr. Desingraja - Team member

Lead Environmental Specialist have hands on Experience more than 15 years in Various Kinds of Industries in Environmental Pollution control departments .

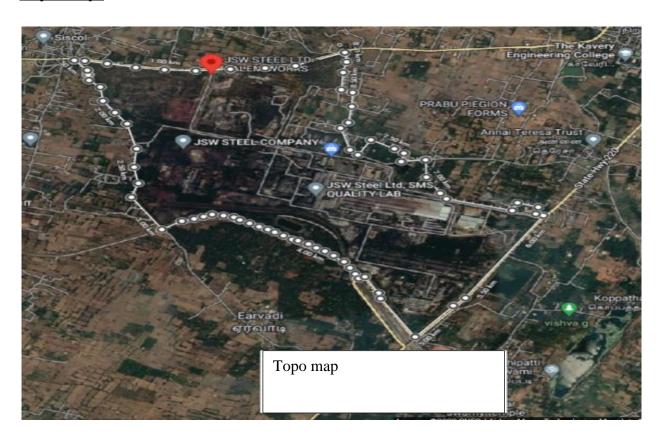
We are recognized Auditors by the Central Government of India and notified accredited Safety Auditors under the Provisions of Manufacture storage, Import of Hazardous chemicals Rule 2000 (Mother Act - Environmental Protection Act 1986) by the Director of Industrial Health and Safety —Tamilnadu.

PART - B

XI. Site Visit

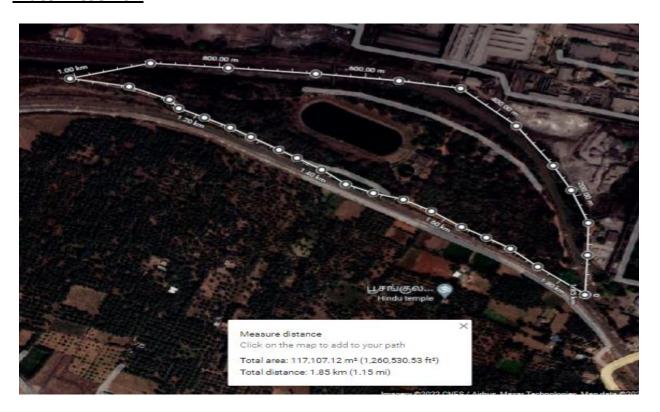
We performed Carbon Sequestration Study for the following areas

- > Boundary's of plant
- > Old gust house
- New gust house
- > New plant area
- > Temple area
- > Wagon tippler
- ➤ Non Recovery Type Coke Oven Plant
- Sinter Plant
- Blast Furnace
- Steel Making
- > Air Separation Plant
- Steel Refining
- Continuous Casting of Billets and Blooms
- > Bar and Rod Mill
- Blooming Mill
- ➢ QAD
- Captive Power Plant (1 X 7 MW & 3 x 30 MW)
- ➤ Utilities Boilers, Water treatment ,ETP ,STP ,Cooling water , Air compressors Etc.
- > HR and Admin
- Purchase and Logistics
- Accounts and Finance office buildings
- Occupational Health Center



➤ New Land area

XII- GREEN BELT TOPO MAP


Topo Map:

Water Reservoir

Wagon to near by Water reservoir:



Coal storage area


Temple Area:

JSW Power plant Area:

Raw Material Yard (Admin Building)

Old Guest House Surrounding Area:

JSW Canteen:

JSW Canteen Back Side:

Mill Area:

Green Belt Development management

Carbon Sequestration Team - 2022

Carbon Sequestration study by GGSS team - 2022

XIII. Recommendations:

✓ Scientific Long Term Planning

Plant green and tree cover should form an integral part of the development of the master plans of the plant and its successive long term management. Resource assessment with respect to water availability, soil type, existing tree species, their density & health, growth conditions, etc. should be done to minimize stressful conditions and ensure long term survival of the selected species. Use of modern scientific tool like GIS wherein the given area can be divided into 1 Km2 x 1 Km2 or 5 Km2 x 5 Km2 uniform grids for planning of afforestation schemes should be done to attain the uniform results.

✓ Industrial Green Agglomerations

High quality clonal or tissue culture seedlings should be supplied to Gardeners for plantation e.g., Neem (Azadirachta indica), Ardusa (Ailenthus sp.), Mango (Mangifera indica), etc. Inclusion of trees in farming systems of inside the plant and periphery landscape can enhance productivity, profitability, diversity, and ecosystem sustainability.

✓ Biodiversity Parks and Tree Tourism

Tree tourism has the potential to attract nature enthusiast and biodiversity lovers to map the biodiversity in the Industrial agglomerations of the plants for their ecological, educational and aesthetics purpose.

✓ Raising of Tall Seedlings

Tall seedlings of ecologically and economically important species should be raised so that plantations grow fast within three years and the success rate of plantation is also improved.

✓ Tree Plantation Campaign

- ✓ Green JSW campaign should be undertaken by involving Workers society, schools, colleges, institutions, NGOs, tree lovers, and farmers to create mass movement for tree planting and their subsequent care.
- ✓ **Guidelines for Tree Felling, Looping, and Pruning in the plant Areas**Tree cutting should be strictly regulated, Prior permission from the top management is mandatory while planning for tree cutting.
- ✓ Land requirement for planting of trees is to be planned and marked in the plant layout as per the CPCB guidelines.
- ✓ **Suggestions** for Air Pollution control and Prevention which will supplement for carbon Sequestration before polluting atmosphere

Operations Control to Prevent Air Pollution

✓ Transport/Handling of Raw Materials:

✓ Raw material transport by rail, road and water, loading/unloading; belt transport; coal washing.

✓ Suggested Treatment:

- ✓ If material is received in moist condition, no precaution needed; For dry material, use water curtain or de-dusting by evacuation to a bag filter while unloading; Extensive enclosure of receiving hopper necessary;
- Minimum height of fall to avoid wind entrainment; Mobile equipment to be avoided, tired vehicle cause (salt and cement) may get contaminated. For proper care use bucket conveyor unloaders with water sprays; Chemical sealing if found suitable.

✓ 2. Bedding and Blending of Ore:

- ✓ Large beds for greater homogenization of composition; Blend recovered and placed on belt for storage; it aids in further blending.
- ✓ Suggested Treatment:
- ✓ Binding agent in the water may be necessary; Ensure proper wetting and use detergents, if need be; Large enclosures and evacuation at high rates at transfer points; Bag filters for cleaning gas; Spray installation at transfer points; Recovery of particulate – laden waters for treatment if necessary. Plantation in and around to arrest dust emission.

√ 3. Sintering/Pelletizing of Iron and Steel:

- ✓ Suitability of fine ore in Blast Furnace; Pelletising with binder and rolled in drums/pans, Indurated at high temperature and cooled; for sintering blending of fines with coarser granular ores, flux mixed with coke breeze and heated; sizing.
- ✓ Important Consideration:
- ✓ Fines generated –
- ✓ (a) Crushing/grinding,
- ✓ (b) Grinding for pelletisation,
- ✓ (c) Cooling/crushing/screening sinter,
- ✓ (d) Cooling and screening pellets;
- ✓ Fugitive dust in pellet plant; Emission of gaseous and liquid fluorine compounds and oil as fuel, SO2/SO3; while fumes due to K2SO4/Na2SO4; Stack emissions may contain upto 1% CO and difficult to remove by incineration; If sintering materials contain lubricants/soluble oils (rolling mill waste), emissions will be visible and may contain hydrocarbon; Large fans create noise.
- ✓ Suggested Treatment:
- ✓ Fugitive dust (a) Recovery by suction hood installation and bag filters/electrostatic precipitation for dry material only, (b) Wet material requires no such precautions,
 (c) Energy saving by recycling clean heated air to ignition hood on sinter strand.
- ✓ Stack Emissions:
- ✓ (a) Normally not necessary to treat stack gases than to remove dust,
- ✓ (b) CaO/SiO2 ratio important. Low ratio may require desulphurisation of gases,
- \checkmark (c) CaO/SiO2 > 2, difficult to apply electrostatic precipitators for fame removal,
- √ (d) High SOx scrubbing with alkaline liquids (milk of lime). Expensive, fouling and disposal may create environmental problems. SO2 converted to gypsum (saleable),
- ✓ (e) High fluorine wet scrubbing or contact with alumina/lime. High basicity leads to low emission,
- ✓ (f) NOx removal catalytic converter (expensive),
- ✓ (g) Particulate removal by water scrubbing or electrostatic precipitators,
- ✓ (h) Cyclones for coarse grit removal,
- ✓ (i) Alkalies can cause problems with precipitators and tend to clog riddles and other mechanisms,

- ✓ (j) Dust to be dumped if recycles not possible,
- ✓ (k) Oily scale from rolling mills to be treated and not recycled to sinter plant.

PART C

XIV . Acknowledgments

We thank M/s. JSW Steel Ltd, Salem Works, Pottaneri P.O., Mecheri, Mettur Taluk, Salem District-636 453, Tamil Nadu, India for offering an opportunity to carry out Carbon Sequestration by Plants Study at their facility. We extend our sincere thanks to Managing director / Occupier of the factory , Factory Manager , Dy. Manager- Environment , AM-Environment , Executive Environment , Environment Assistants , all Employees and all Contract employees who contributed their Support to complete the Carbon Sequestration by Plants Study effectively.

The courtesy and cordiality extended to the carbon Sequestration Study team of Green Global Safety Systems is highly appreciated.

Lead Environment Expert

For Green Global Safety Systems

XV - Reference

- Central Pollution control board Guidelines
- > State pollution control board Guidelines
- Ministry of Environment and Forest Departmental Guidance
- EPA-US Guidelines
- ➤ Environmental Protection act 1986 for Iron and steel Industries
- > Air (Pollution Prevention and Control) 1981
- > Water Pollution (Pollution Prevention and Control) 1974
- The Forest Act
- > Tropical forest and the greenhouse Effect :A Management response, "Norman Myers and Thomas J. Goreau, Discovery Bay Marine Laboratory, University of the West Indies, Discovery Bay, Jamaica, 1991.
- http://www.ciesin.columbia.edu/docs/002-163/002-163.html

XVI. Annexure-I

Comprehensive study Report

M/s. JSW Steels Ltd , Salem Works Carbon Sequestration by the Green Belt -April 22-March 2023

Calculation formula: $0.25 \times (Dia)^2 \times (Height) \times (1.2 \text{ Wet weitht }) \times (0.8 \text{ dry weight }) \times (50\% \text{ carbon content }) \times (3.6663 \text{ Co2 in Carbon }) \times 0.454 \text{ (Pounds to Kg.)} / 1000 \text{ (Kg to Ton.)}$

SI.n	Botonical Name	No of	Location	Diameter	Height		CO2	Age	CO2
0	botomear Name	Trees	Location	in inches	in feet	^weigh	Sequest	sette	Sequ
0		11662		III IIICIIES	III leet	t of	rn in MT	d for	estrn
							TH III IVII		
						Carbon		calcul	in MT
						in Kg		ation	per
									Annu
				_					m
1	Terminalia Catappa	19	5 S Red zone	9	21	1667.22	6.11	10	0.6
2	Fabaceae	26	5 S Red zone	11	21	3445.56	12.63	11	1.1
3	Melia azadirachta	18	5 S Red zone	11	21	2349.24	8.61	11	0.8
						15523.8			
4	Fabaceae	98	5 S Red zone	11	23	3	56.92	11	5.2
	Bambusa					18267.0			
5	arundinacea	1870	AAQMS-2	4	13	0	66.97	2	32.7
6	Fabaceae	86	AAQMS-2	9	18	6452.82	23.66	11	2.1
						17230.0			
7	Fabaceae	218	AAQMS-4 North	9	19	4	63.17	8	7.8
						26311.5			
8	Melia azadirachta	202	AAQMS-4 North	11	21	4	96.47	11	8.7
9	Borassus flabellifer	12	AAQMS-4 North	14	49	6782.24	24.87	19	1.3
						151934.			
10	Tectona grandis	326	AAQMS-4 North	16	34	09	557.04	19	29.2
	-					142984			
11	Tectona grandis	2700	AAQMS-4 North	17	35	9.14	5242.26	19	275.2
	<u> </u>					104603			
12	Tectona grandis	1920	AAQMS-4 North	17	36	7.99	3835.09	19	201.3
13	Fabaceae	484	AAQMS-4 West	4	13	4725.03	17.32	2	8.5
			-			92866.0			
14	Fabaceae	677	Admin Block East	11	22	2	340.47	11	30.8
	· doddodd	U 1 1	7 (4.11.11.12.12.14.12.14.14.14.14.14.14.14.14.14.14.14.14.14.			61817.6	0.0		00.0
15	Fabaceae	216	Admin Block East	14	26	01817.0	226.64	12	18.8
15	Tabaccac	210	Admin block East	17	20		220.04	12	10.0
1.0	Malia anadiya abta	70	Admin Dlack Foot	1.4	20	27318.2	100.10	10	5.3
16	Melia azadirachta	79	Admin Block East	14	30	9	100.16	19	5.3
						103603.			
17	Eucalyptus	106	Admin Block East	22	36	92	379.84	19	19.9
			Admin Block			10013.9			
18	Pithecellobium dulce	55	North	12	24	6	36.71	11	3.3
			Admin Block			26870.1			
19	Pithecellobium dulce	90	North	14	26	8	98.51	19	5.2
			Admin Block						
20	Saraca asoca	10	North	14	35	3867.75	14.18	19	0.7
			Admin Block			40328.1			
21	Eucalyptus	30	North	23	45	7	147.86	19	7.8
<u> </u>	/ 1		Admin office			21376.5			
22	Fabaceae	37	Entrance	18	33	8	78.37	19	4.1
	i abaccae	37		10			70.37	1.5	7.1
22	Fahasas s	420	Admin office	_	1.4	26079.2	05.64	10	ا ر ا
23	Fabaceae	438	Entrance -East	9	14	1	95.61	10	9.5
1			Admin office	_		29530.8	465.5-		0.5 -
24	Fabaceae	840	Entrance -North	7	14	7	108.27	4.6	23.8

			Admin office			10471.9			
25	Saraca asoca	91	Entrance -North	8	31	8	38.39	8	4.8
			Admin office			85616.0			
26	Fabaceae	395	Entrance -North	14	20	2	313.89	17	18.4
			Admin office			19594.9	010.00		
27	Fabaceae	1063	Entrance -South	5	15	5	71.84	2.6	28.2
27	Гарасеае	1003		<u> </u>	13	 	/1.04	2.0	20.2
20	Fahaaaa	005	Admin office	6	4.5	23526.9	06.26	2.6	24.2
28	Fabaceae	895	Entrance -South	6	15	4	86.26	3.6	24.3
			Admin office	_		18806.3			
29	Melia azadirachta	498	Entrance -South	7	15	5	68.95	4.6	15.2
			Admin office			16631.1			
30	Fabaceae	440	Entrance -South	7	15	6	60.97	4.6	13.4
			Admin office			50014.9			
31	Fabaceae	840	Entrance -South	9	14	1	183.37	10	18.2
			Admin office			12565.2			
32	Mangifera indica	190	Entrance -south	9	16	1	46.07	10	4.6
			Admin office			40754.1			
33	Acacia nilotica	467	Entrance -South	9	21	5	149.42	10	14.9
		1	Admin office			11610.8			
34	Mangifera indica	175	Entrance -South	9	16	9	42.57	11	3.9
	Wangirera malea	173	Admin office		10	34049.1	42.57		3.3
35	Melia azadirachta	390	Entrance -South	9	21	0	124.83	11	11.3
33	IVIEIIA AZAUII ACIILA	390		9	21		124.03	11	11.5
26	Allet to below at	5.63	Admin office	0	24	49030.7	470.76	44	16.3
36	Albizia lebbeck	562	Entrance -South	9	21	0	179.76	11	16.3
			Admin office			20504.1			
37	Tectona grandis	54	Entrance -South	14	33	1	75.17	19	3.9
			Admin office			14212.3			
38	Fabaceae	46	Entrance -south	17	21	7	52.11	19	2.7
									0.021
39	Casuarina Tree	24	ANNEALING AREA	1	10	12.153	0.045	2	7
			ANNEALING						0.010
40	Casuarina Tree	12	PLANT	1	10	6.076	0.022	2	9
			ANNEALING						0.054
41	Casuarina Tree	60	PLANT	1	10	30.382	0.111	2	3
			ANNEALING						0.002
42	Casuarina Tree	2	PLANT BACK SIDE	1	10	1.207	0.004	2	2
			ANNEALING						0.173
43	Casuarina Tree	192	PLANT ROAD SIDE	1	10	97.223	0.356	2	9
			ANNEALING						0.108
44	Casuarina Tree	120	PLANT ROAD SIDE	1	10	60.764	0.223	2	7
	Bambusa 			-					
45	arundinacea	226	AQMS North	5	15	4157.84	15.24	2.6	6.0
	Bambusa		4014611	_	4.0	4262.15	4.66	2.0	4.0
46	arundinacea	60	AQMS North	5	14	1263.49	4.63	3.6	1.3
47	Fabaceae	265	AQMS South	7	13	8631.69	31.65	4.6	7.0
48	Fabaceae	42	AQMS South	14	16	7394.82	27.11	17	1.6
						12081.9			
49	Fabaceae	43	AQMS South	17	19	8	44.30	19	2.3
						12487.9	_		
50	Fabaceae	35	AQMS South	18	21	2	45.78	19	2.4

Section Sect	I		I						İ	0.054
52 Casuarina Tree 84 ASP AREA 1 10 42.535 0.156 2 1 0.119 53 Casuarina Tree 132 ASP AREA 1 10 66.841 0.245 2 5 0.132 54 Casuarina Tree 367 ASP AREA 1 10 185.339 0.682 2 5 0.032 55 Casuarina Tree 72 ASP AREA 1 10 36.459 0.134 2 2 0.005 56 Casuarina Tree 120 ASP AREA 1 10 60.764 0.223 2 7 0.108 0.108 0.108 0.108 0.223 2 7 0.108 0.223 2 7 0.108 0.223 2 7 0.108 0.223 2 7 0.108 0.323 2 7 0.108 0.323 2 7 0.108 0.322 2 7 0.108 0.085 0.130 0.085	51	Casuarina Tree	60	ASP ARFA	1	10	30 382	0 111	2	
53 Casuarina Tree 132 ASP AREA 1 10 66.841 0.245 2 0.332 54 Casuarina Tree 367 ASP AREA 1 10 185.999 0.682 2 5 55 Casuarina Tree 72 ASP AREA 1 10 36.459 0.134 2 2 56 Casuarina Tree 120 ASP AREA 1 10 60.764 0.223 2 7 57 Casuarina Tree 120 ASP AREA 1 10 60.764 0.223 2 7 58 Casuarina Tree 144 SIDE 1 10 72.917 0.267 2 4 59 Casuarina Tree 36 ASP ROAD SIDE 1 10 18.229 0.067 2 6 60 Casuarina Tree 72 ASP ROAD SIDE 1 10 36.459 0.134 2 2 61 Fabaceae 34 ASP-1				7.6.7.1.2.1			30.302	0.111		
Sample	52	Casuarina Tree	84	ASP AREA	1	10	42.535	0.156	2	1
Sample										0.119
SAP Casuarina Tree SAP ASP	53	Casuarina Tree	132	ASP AREA	1	10	66.841	0.245	2	
Second Communication Second Communication										
SECTION STATE SECTION SECTIO	54	Casuarina Tree	367	ASP AREA	1	10	185.939	0.682	2	
Casuarina Tree		Constant Tour	70	ACD ADEA	4	40			_	
Section Sect	55	Casuarina Tree	/2	ASP AREA	1	10	36.459	0.134	2	
ST Casuarina Tree 120 ASP AREA 1 10 60.764 0.223 2 7 7 7 7 7 7 7 7 7	56	Casuarina Tree	120	ΔSD ΔRFΔ	1	10	60.764	0 222	2	
S7 Casuarina Tree 120 ASP AREA 1 10 60.764 0.223 2 7	30	Casualilla lifee	120	ASF AILA	Т	10	60.764	0.223		
S8 Casuarina Tree	57	Casuarina Tree	120	ASP AREA	1	10	60.764	0.223	2	
58 Casuarina Tree 144 SIDE 1 10 72,917 0.267 2 4 59 Casuarina Tree 36 ASP ROAD SIDE 1 10 18,229 0.067 2 6 60 Casuarina Tree 72 ASP ROAD SIDE 1 10 36,459 0.134 2 2 0.065 61 Fabaceae 34 ASP-1 9 14 2000.60 7.33 10 0.7 62 Melia azadirachta 30 ASP-1 9 20 2492.96 9.14 11 0.8 63 Eucalyptus 10 ASP-1 16 22 2846.90 10.44 19 0.5 64 Melia azadirachta 18 ASP-1 Back side 10 16 1485.17 5.45 11 0.5 65 Roystonea regia 32 ASP-1 Entrace 12 20 2667.44 9.78 11 0.9 67 Terminalia Catapa							30.751	0.220	_	
Casuarina Tree 36	58	Casuarina Tree	144	SIDE	1	10	72.917	0.267	2	
60 Casuarina Tree 72 ASP ROAD SIDE 1 10 36.459 0.134 2 2 61 Fabaceae 34 ASP-1 9 14 2000.60 7.33 10 0.7 62 Melia azadirachta 30 ASP-1 9 20 2492.96 9.14 11 0.8 63 Eucalyptus 10 ASP-1 16 22 2846.90 10.44 19 0.5 64 Melia azadirachta 18 ASP-1 Back side 10 16 1485.17 5.45 11 0.5 65 Roystonea regia 32 ASP-1 Back side 11 14 2926.20 10.073 11 1.0 66 Albizia lebbeck 18 ASP-1 Back side 12 20 266.744 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.032</td>										0.032
60 Casuarina Tree 72 ASP ROAD SIDE 1 10 36.459 0.134 2 2 61 Fabaceae 34 ASP-1 9 14 2000.60 7.33 10 0.7 62 Melia azadirachta 30 ASP-1 9 20 2492.96 9.14 11 0.8 63 Eucalyptus 10 ASP-1 16 22 286.90 10.44 19 0.5 64 Melia azadirachta 18 ASP-1 Back side 10 16 1485.17 5.45 11 0.5 65 Roystonea regia 32 ASP-1 Back side 12 20 2667.44 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1429.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta	59	Casuarina Tree	36	ASP ROAD SIDE	1	10	18.229	0.067	2	
61 Fabaceae 34 ASP-1 9 14 2000.60 7.33 10 0.7 62 Melia azadirachta 30 ASP-1 9 20 2492.96 9.14 11 0.8 63 Eucalyptus 10 ASP-1 16 22 2846.90 10.44 19 0.5 64 Melia azadirachta 18 ASP-1 Back side 10 16 1485.17 5.45 11 0.5 65 Roystonea regia 32 ASP-1 Back side 11 14 2926.20 10.73 11 1.0 66 Albizia lebbeck 18 ASP-1 Back side 12 20 2667.44 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1429.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2839.24 10.41 12 0.9 70 Fabaceae										
62 Melia azadirachta 30 ASP-1 9 20 2492.96 9.14 11 0.8 63 Eucalyptus 10 ASP-1 16 22 2846.90 10.44 19 0.5 64 Melia azadirachta 18 ASP-1 Back side 10 16 1485.17 5.45 11 0.5 65 Roystonea regia 32 ASP-1 Back side 12 20 2667.44 9.78 11 1.0 66 Albizia lebbeck 18 ASP-1 Back side 12 20 2667.44 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1429.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta 12 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 E	-						+			
63 Eucalyptus 10 ASP-1 16 22 2846.90 10.44 19 0.5 64 Melia azadirachta 18 ASP-1 Back side 10 16 1485.17 5.45 11 0.5 65 Roystonea regia 32 ASP-1 Back side 11 14 2926.20 10.73 11 1.0 66 Albizia lebbeck 18 ASP-1 Back side 12 20 2667.44 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1420.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta 12 ASP-1 Entrance 14 22 2839.24 10.41 12 0.9 70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 <td< td=""><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-		1							
64 Melia azadirachta 18 ASP-1 Back side 10 16 1485.17 5.45 11 0.5 65 Roystonea regia 32 ASP-1 Back side 11 14 2926.20 10.73 11 1.0 66 Albizia lebbeck 18 ASP-1 Back side 12 20 2667.44 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1429.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta 12 ASP-1 Entrance 10 22 2839.24 10.41 12 0.7 70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72	-									
65 Roystonea regia 32 ASP-1 Back side 11 14 2926.20 10.73 11 1.0 66 Albizia lebbeck 18 ASP-1 Back side 12 20 2667.44 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1429.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta 12 ASP-1 Entrance 14 22 2839.24 10.41 12 0.9 70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72 Melia azadirachta 42 ASP-2 south 10 22 4375.03 16.04 11 1.5 75							+			
66 Albizia lebbeck 18 ASP-1 Back side 12 20 2667.44 9.78 11 0.9 67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1429.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta 12 ASP-1 Entrance 14 22 2839.24 10.41 12 0.9 70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72 Melia azadirachta 42 ASP-2 south 9 18 3136.79 11.50 11 1.0 74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia a							+			
67 Terminalia Catappa 24 ASP-1 Entrance 9 14 1429.00 5.24 10 0.5 68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta 12 ASP-1 Entrance 14 22 2839.24 10.41 12 0.9 70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72 Melia azadirachta 42 ASP-2 south 9 18 3136.79 11.50 11 1.0 74 Fabaceae 47 ASP-2 south 10 22 4375.03 16.04 11 1.5 75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 7 Tamarindus	-						+			
68 Derris indica 18 ASP-1 Entrance 10 22 2050.80 7.52 11 0.7 69 Melia azadirachta 12 ASP-1 Entrance 14 22 2839.24 10.41 12 0.9 70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72 Melia azadirachta 42 ASP-2 south 9 18 3136.79 11.50 11 1.0 73 Albizia lebbeck 38 ASP-2 south 10 22 4375.03 16.04 11 1.5 74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus in										
69 Melia azadirachta 12 ASP-1 Entrance 14 22 2839.24 10.41 12 0.9 70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72 Melia azadirachta 42 ASP-2 south 9 18 3136.79 11.50 11 1.0 73 Albizia lebbeck 38 ASP-2 south 10 22 4375.03 16.04 11 1.5 74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 7 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia	-						+			
70 Fabaceae 6 ASP-1 Entrance 14 21 1391.68 5.10 17 0.3 71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72 Melia azadirachta 42 ASP-2 south 9 18 3136.79 11.50 11 1.0 73 Albizia lebbeck 38 ASP-2 south 10 22 4375.03 16.04 11 1.5 74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera </td <td></td>										
71 Eucalyptus 5 ASP-1 Entrance 16 30 1969.55 7.22 19 0.4 72 Melia azadirachta 42 ASP-2 south 9 18 3136.79 11.50 11 1.0 73 Albizia lebbeck 38 ASP-2 south 10 22 4375.03 16.04 11 1.5 74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 80 Boras	—									
72 Melia azadirachta 42 ASP-2 south 9 18 3136.79 11.50 11 1.0 73 Albizia lebbeck 38 ASP-2 south 10 22 4375.03 16.04 11 1.5 74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Bor	-									
73 Albizia lebbeck 38 ASP-2 south 10 22 4375.03 16.04 11 1.5 74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81							1			
74 Fabaceae 47 ASP-2 south 11 21 6197.62 22.72 11 2.1 75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 8 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabace							+			
75 Melia azadirachta 19 ASP-2 south 11 21 2505.86 9.19 11 0.8 76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7	-		1							
76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7	-									
76 Melia azadirachta 36 Assembly point-1 18 35 8 80.48 19 4.2 77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7	75	Melia azadirachta	19	ASP-2 south	11	21		9.19	11	0.8
77 Tamarindus indica 14 Assembly point-2 14 36 5968.56 21.88 19 1.1 78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7			0.0		4.0				4.0	
78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7	/6	Melia azadirachta	36	Assembly point-1	18	35	8	80.48	19	4.2
78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7			4.4		4.4	2.6	5000 50	24.00	40	
78 Albizia lebbeck 66 Assembly point-3 14 31 5 86.27 19 4.5 79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7	//	lamarındus indica	14	Assembly point-2	14	36		21.88	19	1.1
79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7	70	Albinia Inlahasi	66	Accomplete	4.4	24		06.27	10	4 -
79 Cocos nucifera 24 Assembly point-4 16 39 7 47.03 19 2.5 80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7	/8	Albizia lebbeck	рр	Assembly point-3	14	31		86.27	19	4.5
80 Borassus flabellifer 12 Assembly point-5 13 38 4243.31 15.56 11 1.4 81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7 10546.7	70	Cocos pusifora	24	Accombly point 4	16	20		47.02	10	2 -
81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 10546.7	/9	cocos nucirera		Assembly point-4	10	39	/	47.03	19	2.5
81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 10546.7	00	Poraccus flaballifor	12	Accombly point 5	10	20	1212 21	15 56	11	1 1
81 Fabaceae 426 ASV-2 North 5 16 4 37.77 3.6 10.6 82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7	80	DOLASSUS HADEIIIIEI	12	Assembly point-5	13	38		13.30	11	1.4
82 Fabaceae 306 ASV-2 North 5 14 6443.80 23.62 3.6 6.7 10546.7 1054	81	Fabaceae	426	ASV-2 North	5	16		37.77	3.6	10.6
10546.7							1			
	52		500	7.57 2 1151(11	<u> </u>			20.02	3.0	0.,
	83	Fabaceae	300	ASV-2 North	7	14		38.67	4.6	8.5

84	Fabaceae	122	ASV-2 North	7	15	4622.28	16.95	4.6	3.7
85	Fabaceae	144	ASV-2 North	10	16	11881.3 5	43.56	11	3.9
- 03	Tubuccuc	177	Bar and rod mill	10	10	3	+3.30		3.3
86	Albizia lebbeck	18	entrance-east	8	25	1663.61	6.10	8	0.8
	7 HOLLIG TERRECK	10	Bar and rod mill			33946.1	0.10		0.0
87	Derris indica	66	entrance-east	17	34	8	124.46	19	6.5
			Bar and rod mill		-				
88	Derris indica	66	entrance-South	5	14	1389.84	5.10	3.6	1.4
			Bar and rod mill						
89	Fabaceae	12	entrance-South	9	18	896.23	3.29	10	0.3
			Bar and rod mill						
90	Melia azadirachta	12	entrance-South	9	19	946.71	3.47	10	0.3
			Bar and rod mill						
91	Albizia lebbeck	20	entrance-South	9	21	1781.03	6.53	11	0.6
			Bar and rod mill						
92	Fabaceae	18	entrance-South	10	20	1862.25	6.83	11	0.6
			Bar and rod mill						
93	Derris indica	18	entrance-South	10	22	2050.80	7.52	11	0.7
			Bar and rod mill						
94	Albizia lebbeck	12	entrance-South	11	21	1566.16	5.74	11	0.5
0.5	Constitution Total	20	DE 11	4	40			_	0.027
95	Casuarina Tree	30	BF II	1	10	15.191	0.056	2	2 0.076
96	Casuarina Tree	84	BF II AREA	1	10	42.535	0.156	2	1
30	casaarina rree	04	DI II/IIIE/I		10	42.555	0.130		0.108
97	Casuarina Tree	120	BF II AREA	1	10	60.764	0.223	2	7
			BF II GROUND						0.032
98	Casuarina Tree	36	OFFER	1	10	18.229	0.067	2	6
			BF II GROUND						0.059
99	Casuarina Tree	66	OFFER	1	10	33.420	0.123	2	8
100	Musa paradisiaca	120	BF North	5	11	1600.68	5.87	2.6	2.3
101	Albizia lebbeck	53	BF North	8	22	4239.23	15.54	8	1.9
100	NA alia a a alius alata	200	DE Novelle	0	24	25353.4	02.05	11	0.4
102	Melia azadirachta	290	BF North	9	21	8	92.95	11	8.4
103	Albizia lebbeck Roystonea regia	18	BF North BF North	11	21	2349.24	8.61	11	0.8
104	Cocos nucifera	26		14	25	7575.88	27.78	19	1.5
105	Cocos nucliera	14	BF North	14	36	5968.56	21.88	19	1.1
106	Fabaceae	30	BF-1 Pump house	6	16	842.89	3.09	3.6	0.9
						0 12100			
I									
107	Terminalia Catappa	66	BF-1 Pump house	7	13	2148.16	7.88	4.6	1.7
107 108	Terminalia Catappa Roystonea regia	66 66	BF-1 Pump house Blast Furnace -1	7 5	13 14	2148.16 1389.84	7.88 5.10	4.6 3.6	1.7 1.4
			•						
108	Roystonea regia	66	Blast Furnace -1	5	14	1389.84	5.10	3.6	1.4
108 109	Roystonea regia Terminalia Catappa	66 60	Blast Furnace -1 Blast Furnace -1	5 7	14 15	1389.84 2265.83	5.10 8.31	3.6 4.6	1.4 1.8

			Blast Furnace						
113	Fabaceae	18	Near to AIR compr	5	14	379.05	1.39	3.6	0.4
113	Tabaseac		Blast Furnace Near to AIR			373.03	1.03	3.0	0.1
114	Terminalia Catappa	18	compr	7	14	632.80	2.32	4.6	0.5
			Blast Furnace Near to AIR						
115	Melia azadirachta	18	compr	9	20	1469.28	5.39	10	0.5
116	Fabaceae	96	BLM North	9	14	5715.99	20.96	10	2.1
117	Fabaceae	208	BLM North	9	21	18124.6 0	66.45	11	6.0
118	Swietenia Mahagoni	50	BLM North	10	20	5214.31	19.12	11	1.7
119	Fabaceae	18	BRM	9	19	1420.06	5.21	10	0.5
120	Melia azadirachta	18	BRM	11	22	2469.84	9.06	11	0.8
									0.054
121	Casuarina Tree	60	BRM AREA	1	10	30.382	0.111	2	3
122	Tahaaaa	206	BRM Charge	0	10	24140.9	00.54	10	0.0
122	Fabaceae	306	West	9	19	8	88.51	10	8.8
			BRM Pump house						
123	Albizia lebbeck	18	entrance East	11	23	2839.72	10.41	11	0.9
123	7 HOIZIG TEDDECK	10	Citrarioe East		23	2033.72	10.11		0.5
			BRM Pump house						
124	Derris indica	30	entrance North	7	15	1132.91	4.15	4.6	0.9
	Couroupita		BRM Pump house						
125	Guianensis	18	entrance North	11	23	2839.72	10.41	11	0.9
125		4.0	BRM Pump house	4.4	2.4	2467.64	44.64	4.0	1.0
126	Albizia lebbeck	12	entrance North	14	24	3167.61	11.61	12	1.0
			BRM Pump house						
127	Cocos nucifera	12	entrance North	14	49	6782.24	24.87	19	1.3
			BRM Pump house						
128	Fabaceae	12	entrance West	9	19	946.71	3.47	10	0.3
									0.032
129	Casuarina Tree	36	CANTEEN AREA	1	10	18.229	0.067	2	6
422	Malia a sultina la	60	Canteen road	•	24	F463.60	40.00	40	4.0
130	Melia azadirachta	60	view	9	21	5162.60	18.93	10	1.9
131	Fabaceae	24	Canteen road view	13	31	6913.11	25.35	11	2.3
131	Fabaceae	18	CC-1	9	18	1344.34	4.93	8	0.6
132	Tabaccac	10	001		10	1374.34	7.55		0.010
133	Casuarina Tree	12	CCM III	1	10	6.076	0.022	2	9
			CCM III SCRAP						0.125
134	Casuarina Tree	138	YARD	1	10	69.879	0.256	2	0

135	Casuarina Tree	18	CEMENT FACTORY	1	10	9.115	0.033	2	0.016
136	Pithecellobium dulce	18	Center plant 1 Assembly point	7	15	679.75	2.49	4.6	0.5
137	Fabaceae	24	Center plant 1 Assembly point	8	21	1832.83	6.72	8	0.8
138	Terminalia Catappa	12	Center plant 1 Assembly point	9	19	946.71	3.47	10	0.3
139	Melia azadirachta	18	Center plant 1 Assembly point	11	23	2590.44	9.50	11	0.9
140	Cocos nucifera	12	Center plant 1 Assembly point	14	48	6386.16	23.41	17	1.4
141	Tectona grandis	20	Center plant 1 Assembly point	17	35	10803.3 0	39.61	19	2.1
142	Fabaceae	175	Chimney area	7	14	6159.30 10711.3	22.58	4.6	5.0
143	Fabaceae	6600	Chimney area	2	11	6 22159.6	39.27	5.6	7.1
144	Melia azadirachta	276	Chimney area	8	22	0 26295.2	81.24	8	10.1
145	Cocos nucifera	67	Chimney area	14	34	4 119371.	96.41	19	5.1
146	Cocos nucifera	288	Chimney area	14	36	43664.8	437.65	19	23.0
147 148	Tamarindus indica Cocos nucifera	60 12	Chimney area Coal yard East	19 14	36 45	6 6225.80	160.09 22.83	19 19	8.4 1.2
140	COCOS HUCHETA	12	Coal yard Last	14	43	11812.3	22.63	19	1.2
149	Fabaceae	336	Coal yard north	7	14	5	43.31	4.6	9.5
150	Fabaceae	312	Coil yard north	5	12	5595.36	20.51	3.6	5.8
151	Fabaceae	310	Coil yard north	6	15	8136.66	29.83	3.6	8.4
152	Fabaceae	98	Coil yard north	7	14	3459.33	12.68	4.6	2.8
153	Melia azadirachta	13	Coil yard north	9	21	1152.43	4.23	10	0.4
154	Melia azadirachta	13	Coil yard north	11	21	1722.78	6.32	11	0.6
155	Ficus religiosa	7	Coil yard north	14	26	2149.61	7.88	19	0.4
156	Casuarina Tree	60	COKE OVEN AREA	1	10	30.382	0.111	2	0.054
157	Casuarina Tree	60	COKE OVEN AREA	1	10	30.382	0.111	2	0.054 3 0.108
158	Casuarina Tree	120	COKE OVEN AREA	1	10	60.764	0.223	2	7 0.108
159	Casuarina Tree	120	LEMS SHED	1	10	60.764	0.223	2	7
160	Fabaceae	1080	cook oven hopper	6	16	30343.8 8	111.25	3.6	31.3
161	Fabaceae	360	cook oven hopper	6	16	10114.6	37.08	3.6	10.4
162	Fabaceae	118	cook oven hopper	9	16	7793.61	28.57	10	2.8
163	Melia azadirachta	38	cook oven hopper	9	14	2286.40	8.38	11	0.8

164	Melia azadirachta	106	cook oven hopper	9	16	6998.34	25.66	11	2.3
			cook oven plant	_					
165	Albizia lebbeck	36	East	5	15	814.33	2.99	3.6	0.8
166	Fabaceae	202	cook oven plant East	5	13	3930.40	14.41	3.6	4.1
100	гарасеае	202	cook oven plant	3	15	3930.40	14.41	3.0	4.1
167	Fabaceae	348	East	6	15	9145.86	33.53	3.6	9.4
			cook oven plant						
168	Fabaceae	120	East	6	16	3371.54	12.36	3.6	3.5
	Bambusa		cook oven plant			38772.7			
169	arundinacea	1380	East	6	16	4	142.15	3.6	40.0
	Bambusa		cook oven plant	_		16313.9			
170	arundinacea	432	East	7	15	4	59.81	4.6	13.1
171	Melia azadirachta	180	cook oven plant	7	15	6707.49	24.02	4.6	
1/1	Mena azadirachta	180	East	/	15	6797.48	24.92	4.6	5.5
172	Fabaceae	173	cook oven plant East	7	15	6525.58	23.92	4.6	5.3
	rabaccac	173	cook oven plant	,	13	0323.30	23.32	1.0	3.3
173	Tamarindus indica	17	East	9	14	1000.30	3.67	10	0.4
			cook oven plant						
174	Albizia lebbeck	19	East	9	21	1676.26	6.15	10	0.6
			cook oven plant						
175	Fabaceae	18	East	10	20	1862.25	6.83	11	0.6
470			cook oven plant				40.00		
176	Cassia tora	31	East	10	22	3554.72	13.03	11	1.2
177	Borassus flabellifer	14	cook oven plant East	13	48	6440.69	23.61	11	2.1
1//	BOLASSUS HADEIIITEI	14	cook oven plant	13	40	15615.8	23.01	11	2.1
178	Fabaceae	66	East	14	22	2	57.25	12	4.8
	rasaccac		cook oven plant			10141.4	37.23		
179	Melia azadirachta	58	East	14	16	7	37.18	17	2.2
	Bambusa		cook oven plant			19543.9			
180	arundinacea	864	West	5	15	6	71.65	3.6	20.2
	Bambusa		cook oven plant			25856.0			
181	arundinacea	794	West	7	13	0	94.80	4.6	20.8
400	F . b	2.40	cook oven plant	-	4.4	12234.2	44.05	4.6	0.0
182	Fabaceae	348	West	7	14	2 20000 0	44.85	4.6	9.9
183	Bambusa arundinacea	792	cook oven plant West	7	15	29908.9 0	109.65	4.6	24.1
103	ar arrantacea	132	cook oven plant	,	1.0		103.03	7.0	2 4 .1
184	Derris indica	106	West	9	13	5821.16	21.34	10	2.1
			cook oven plant			27722.5			
185	Fabaceae	466	West	9	14	5	101.64	10	10.1
			cook oven plant			18719.8			
186	Fabaceae	314	West	9	14	7	68.63	11	6.2
		_	cook oven plant				_		_
187	Fabaceae	26	West	10	13	1811.85	6.64	11	0.6

			cook oven plant						1 1
188	Bauhinia purpurea	22	West	10	20	2234.71	8.19	11	0.7
	Daariina parparea		cook oven plant				0.20		0.7
189	Melia azadirachta	26	West	11	20	3327.64	12.20	11	1.1
			cook oven plant						
190	Melia azadirachta	46	West	11	22	6329.67	23.21	11	2.1
			cook oven plant			28397.2			
191	Melia azadirachta	180	West	11	23	5	104.11	11	9.4
	Couroupita		cook oven plant						
192	Guianensis	24	West	14	14	3785.68	13.88	17	0.8
			cook oven plant						
193	Melia azadirachta	34	West	14	14	5299.95	19.43	17	1.1
			cook oven plant						
194	Derris indica	36	West	14	16	6338.42	23.24	17	1.4
			cook oven plant			30990.8			
195	Tectona grandis	79	West	14	34	2	113.62	19	6.0
196	Fabaceae	30	cookoven north	9	21	2581.30	9.46	10	0.9
197	Fabaceae	186	CPP 2 & AAQMS	7	15	7024.06	25.75	4.6	5.7
198	Fabaceae	32	CPP 2 & AAQMS	8	16	1732.00	6.35	6	1.0
199	Fabaceae	88	CPP 2 & AAQMS	10	20	9062.97	33.23	11	3.0
				4.0		10334.8			
200	Fabaceae	29	CPP 2 & AAQMS	18	21	3	37.89	19	2.0
201	Fabaceae	31	CPP 2 & AAQMS	21	24	18499.1 7	67.82	19	3.6
201	rapaceae	31	CFF 2 & AAQIVIS	21	24	/	07.62	19	0.163
202	Casuarina Tree	180	CPP II AREA	1	10	91.147	0.334	2	0.103
					_	02.2.17	5.551		0.108
203	Casuarina Tree	120	CPP II AREA	1	10	60.764	0.223	2	7
									0.054
204	Casuarina Tree	60	CPP III AREA	1	10	30.382	0.111	2	3
205	Melia azadirachta	25	CPP New	9	14	1500.45	5.50	10	0.5
206	Melia azadirachta	14	CPP New	10	18	1338.97	4.91	11	0.4
207	Melia azadirachta	22	CPP New	14	22	5110.63	18.74	12	1.6
208	Melia azadirachta	19	CPP New	17	24	6949.61	25.48	19	1.3
			CPP-1 Entrance						
209	Terminalia Catappa	30	east	7	14	1054.67	3.87	4.6	0.8
		4.0	CPP-1 Entrance			4.60.00			
210	Derris indica	18	east	9	20	1469.28	5.39	11	0.5
244		20	CPP-1 Entrance	4.4	22	4047.40	45.00	4.4	
211	Melia azadirachta	30	east	11	23	4317.40	15.83	11	1.4
242	F. coloratoro	_	CPP-1 Entrance	1.4	26	1422.00	F 2F	10	0.3
212	Eucalyptus	5	east	14	26	1433.08	5.25	19	0.3
213	Terminalia Catappa	120	CPP-1 Entrance North	7	15	4531.65	16 61	4.6	3.7
213	тетинана Сатарра	120		/	15	4001.00	16.61	4.0	3.7
214	Eucalyptus	2	CPP-1 Entrance North	14	22	561.32	2.06	12	0.2
Z 14	Lucalyptus	4	INUITII	14		JU1.JZ	2.00	14	0.2
			CDD-1 Entrance						
215	Fabaceae	4	CPP-1 Entrance North	14	24	930.08	3.41	12	0.3

1			CPP-1 Entrance			39538.6			
216	Tectona grandis	67	North	14	52	1	144.96	19	7.6
			CPP-1 Entrance			90931.1			
217	Tectona grandis	122	North	17	49	4	333.38	19	17.5
			CPP-1 Entrance			25837.0			
218	Albizia lebbeck	72	North	18	21	7	94.73	19	5.0
			CPP2						
219	Fabaceae	150	Transformer	5	15	2764.52	10.14	2.6	4.0
			CPP2						
220	Fabaceae	22	Transformer	9	18	1613.21	5.91	10	0.6
224	NA alia a a adina alata	1.4	CPP2	0	1.0	054.33	2.50	44	0.2
221	Melia azadirachta	14	Transformer	9	16	954.32	3.50	11	0.3
			CPP2 Transformer -						
222	Melia azadirachta	46	North	9	18	3405.66	12.49	10	1.2
	TVICITA AZAGITACITA	10	CPP2		10	3 103.00	12.15	10	1.2
			Transformer -						
223	Fabaceae	24	North	9	18	1792.45	6.57	11	0.6
			CPP2						
			Transformer -						
224	Fabaceae	78	North	9	20	6481.70	23.76	11	2.2
			CPP2						
			Transformer -						
225	Melia azadirachta	34	North	14	20	7286.47	26.71	17	1.6
			CPP2						
226	Melia azadirachta	26	Transformer -	16	22	7020.07	28.70	10	1.5
220	IVIEIIA AZAUITACIILA	20	North	10	22	7828.97	28.70	19	1.5
			CPP2 Transformer -			37030.7			
227	Roystonea regia	60	North	16	45	4	135.77	19	7.1
	,		Crusher way			14379.6			
228	Fabaceae	146	Bridge area	10	19	0	52.72	11	4.8
			Crusher way						
229	Melia azadirachta	47	Bridge area	10	22	5332.07	19.55	11	1.8
			DM plant						
230	Terminalia Catappa	18	entrance	5	14	379.05	1.39	3.6	0.4
			DM plant						
231	Melia azadirachta	30	entrance	12	22	4984.15	18.27	11	1.7
222	Ciano maliais as	12	DM plant	47	30	F074 00	10.64	40	4.0
232	Ficus religiosa	12	entrance	17	28	5074.92	18.61	19	1.0
233	Albizia lebbeck	84	Entrance Gate Right side	6	14	2055.16	7.53	3.6	2.1
233	Bambusa	04	Entrance Gate	U	14	2033.10	7.33	3.0	۷.1
234	arundinacea	66	Right side	6	15	1734.56	6.36	3.6	1.8
		33	Entrance Gate	 			3.55	3.5	
235	Carica Papaya	18	Right side	8	16	932.62	3.42	6	0.6
			Entrance Gate						
236	Albizia lebbeck	12	Right side	9	16	795.27	2.92	10	0.3

			Entrance Gate			12048.1			-
237	Melia azadirachta	138	Right side	9	21	4	44.17	11	4.0
			Entrance Gate						
238	Albizia lebbeck	24	Right side	10	20	2483.01	9.10	11	0.8
			Entrance Gate						
239	Albizia lebbeck	18	Right side	11	21	2349.24	8.61	11	0.8
			Entrance Gate			103280.			
240	Albizia lebbeck	583	Right side	11	28	77	378.66	11	34.3
			Entrance Gate						
241	Melia azadirachta	60	Right side	11	23	9465.75	34.70	11	3.1
			Entrance Gate			16607.8			
242	Borassus flabellifer	30	Right side	14	48	3	60.89	19	3.2
			Entrance Gate			48732.4			
243	Borassus flabellifer	94	Right side	16	38	7	178.67	19	9.4
244	Derris indica	24	EOF - 1	8	22	1926.92	7.06	8	0.9
245	Terminalia Catappa	18	EOF - 1	9	21	1571.50	5.76	10	0.6
246	Roystonea regia	34	EOF - 1	11	28	5950.33	21.82	11	2.0
247	Melia azadirachta	12	EOF - 1	14	24	3304.47	12.12	19	0.6
240	F a a b . m t a	20	FOF 1	1.0	20	16033.0	FO 70	10	2.1
248	Eucalyptus	30	EOF - 1	16	39	9	58.78	19	3.1
249	Torminalia Catanna	18	EOF - 2 & MCC-5 entrance	6	16	505.73	1.85	3.6	0.5
249	Terminalia Catappa	10		0	10	303.73	1.03	3.0	0.5
250	Melia azadirachta	18	EOF - 2 & MCC-5 entrance	9	16	1192.90	4.37	11	0.4
230	IVICIIA AZAGII ACIILA	10	EOF - 2 & MCC-5	<u> </u>	10	1132.30	4.57	11	0.4
251	Roystonea regia	18	entrance	10	18	1673.71	6.14	11	0.6
	no ystorica regia	10	EOF - 2 & MCC-5	10	10	1073171	0.11		0.0
252	Fabaceae	19	entrance	11	22	2665.12	9.77	11	0.9
			EOF - 2 & MCC-5						
253	Eucalyptus	4	entrance	14	24	930.08	3.41	12	0.3
254	Melia azadirachta	12	Fuel/Flux west	9	16	795.27	2.92	10	0.3
255	Thespesia populnea	23	Fuel/Flux west	9	19	1798.74	6.59	10	0.7
						47996.3			
256	Fabaceae	588	Fuel/Flux west	9	20	4	175.97	11	15.9
			Furnace oil						
257	Terminalia Catappa	18	storage tank	8	16	962.22	3.53	6	0.6
			Furnace oil	_					
258	Fabaceae	18	storage tank	9	16	1192.90	4.37	11	0.4
250	Fahaaaa	26	Furnace oil	10	20	2724.24	10.01	44	0.0
259	Fabaceae	26	storage tank	10	20	2731.31 19963.2	10.01	11	0.9
260	Albizia lebbeck	216	Generator North	8	25	19963.2	73.19	8	9.1
261	Saraca asoca	12	Generator North	8	31	1377.89	5.05	8	0.6
262	Melia azadirachta	54	Generator North	9	25	5623.12	20.62	11	1.9
263	Ficus Religiosa	30	Generator North	11	22	4116.40	15.09	11	1.4
264	Albizia lebbeck	48	Generator North	11	28	8500.47	31.17	11	2.8
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					25393.3	·		
265	Albizia lebbeck	77	Generator North	14	30	4	93.10	13	7.1

1						17112.9			
266	Albizia lebbeck	48	Generator North	14	31	8	62.74	19	3.3
						38503.7			
267	Eucalyptus	98	Generator North	14	34	5	141.17	19	7.4
268	Fabaceae	12	Generator North	18	33	6895.67	25.28	19	1.3
						99514.5			
269	Pithecellobium dulce	106	Generator North	21	38	4	364.85	19	19.2
			GIVEN TO						0.010
270	Casuarina Tree	12	METTUR	1	10	6.076	0.022	2	9
			HR OFFICE BACK						0.021
271	Casuarina Tree	24	SIDE	1	10	12.153	0.045	2	7
			Jsw Canteen to						
			gate compound						
272	Carica Papaya	101	boundry	4	13	984.87	3.61	2	1.8
			Jsw Canteen to						
			gate compound						
273	Acacia nilotica	60	boundry	4	13	586.23	2.15	2	1.0
			Jsw Canteen to						
			gate compound						
274	Musa paradisiaca	187	boundry	5	13	2973.60	10.90	2.6	4.3
			Jsw Canteen to						
	Bambusa		gate compound			36598.1			
275	arundinacea	2304	boundry	5	13	0	134.18	2.6	52.6
			Jsw Canteen to						
			gate compound						
276	Albizia lebbeck	24	boundry	6	15	630.75	2.31	3.6	0.7
			Jsw Canteen to						
			gate compound			22258.5			
277	Melia azadirachta	430	boundry	8	16	8	81.61	6	13.5
			Jsw Canteen to						
			gate compound			29142.0			
278	Melia azadirachta	382	boundry	8	21	6	106.84	8	13.3
			Jsw Canteen to						
			gate compound			59567.1			
279	Melia azadirachta	780	boundry	8	21	1	218.39	8	27.1
			Jsw Canteen to						
			gate compound						
280	Albizia lebbeck	54	boundry	9	18	4033.02	14.79	8	1.8
			Jsw Canteen to						
			gate compound			27595.7			
281	Albizia lebbeck	416	boundry	9	16	4	101.17	10	10.1
			Jsw Canteen to						
			gate compound			21472.1			
282	Fabaceae	324	boundry	9	16	9	78.72	10	7.8
			Jsw Canteen to						
			gate compound						
283	Fabaceae	100	boundry	9	16	6600.71	24.20	10	2.4

284	Melia azadirachta	432	Jsw Canteen to gate compound boundry	9	21	37715.9 3	138.28	10	13.8
204	IVICIIA AZAGII ACITCA	432	Jsw Canteen to	9	21	3	130.20	10	13.8
285	Syzygium cumini	53	gate compound boundry	9	21	4609.72	16.90	10	1.7
			Jsw Canteen to gate compound			12596.7			
286	Melia azadirachta	146	boundry	9	21	5	46.18	10	4.6
287	Albizia lebbeck	720	Jsw Canteen to gate compound boundry	9	14	42869.9	157.17	11	14.2
			Jsw Canteen to			25000 5			
288	Albizia lebbeck	348	gate compound boundry	9	18	25990.5 4	95.29	11	8.6
			Jsw Canteen to gate compound			13801.8			
289	Albizia lebbeck	185	boundry	9	18	7	50.60	11	4.6
			Jsw Canteen to gate compound						
290	Albizia lebbeck	78	boundry	9	20	6366.86	23.34	11	2.1
			Jsw Canteen to gate compound			37597.9			
291	Melia azadirachta	330	boundry	10	22	5	137.85	11	12.5
			Jsw Canteen to gate compound			70477.3			
292	Melia azadirachta	540	boundry	11	21	3	258.39	11	23.4
			Jsw Canteen to			41190.0			
293	Fabaceae	316	gate compound boundry	11	21	8	151.02	11	13.7
			Jsw Canteen to			22740.4			
294	Fabaceae	173	gate compound boundry	11	22	23710.4 7	86.93	11	7.9
			Jsw Canteen to						
295	Melia azadirachta	804	gate compound boundry	11	22	120936. 00	443.39	11	40.1
			Jsw Canteen to						
296	Borassus flabellifer	118	gate compound boundry	13	45	49294.5 7	180.73	11	16.4
	2.3230		Jsw Canteen to						
297	Borassus flabellifer	468	gate compound boundry	14	48	249060. 39	913.13	17	53.6
	25.43343	.55	Jsw Canteen to			33	3 2 3 . 2 3		33.0
298	Cocos nucifera	84	gate compound boundry	14	48	46501.9 3	170.49	19	8.9
230	COCOS HUCHEIA	04	Jsw Canteen to	14	70	3	170.43	13	0.3
200	Poraccus flaballifar	120	gate compound	1.4	10	76396.0	200.00	10	147
299	Borassus flabellifer	138	boundry	14	48	4	280.09	19	14.7

300 Borassus flabellifer				Jsw Canteen to			64431.3			
September Sept	300	Borassus flabellifer	114		14	49		236.22	19	12.4
301 Cocos nucifera 100 Doundry 14 49 3 206.39 19 10.8				Jsw Canteen to						
Jsw Canteen to gate compound boundry 17				gate compound			56292.6			
Borassus flabellifer	301	Cocos nucifera	100	boundry	14	49	3	206.39	19	10.8
302 Borassus flabellifer 86 Boundry 17 48 5 230.50 19 12.1										
Jish Canteen to gate compound Jish Canteen to gate compoun	202	0 1 11:0	0.0		47	40		222.50	40	42.4
Single S	302	Borassus flabelliter	86	<i>'</i>	1/	48	5	230.50	19	12.1
303 Ficus benghalensis 119 boundry 17 30 7 197.47 19 10.4							F2062.1			
Jsw Canteen to gate compound 17	303	Figus henghalensis	119		17	30		197 <i>4</i> 7	19	10.4
304 Cocos nucifera 103 gate compound boundry 17 48 0 275.32 19 14.5	303	ricus perignalerisis	113	•	17	30	,	137.47	13	10.4
304 Cocos nucifera 103 boundry 17 48 0 275.32 19 14.5							75094.9			
Jsw Canteen to gate compound boundry 17 49 4 281.09 19 14.8	304	Cocos nucifera	103		17	48		275.32	19	14.5
Tectona grandis										
305 Tectona grandis 103 Doundry 17 49 4 281.09 19 14.8							76667.4			
Sample S	305	Tectona grandis	103		17	49	4	281.09	19	14.8
306 Tamarindus indica 1800 boundry 18 24 05 2750.23 19 144.4 307 Fabaceae 709 East Boundry 5 14 5 54.75 3.6 15.4 308 Albizia lebbeck 185 East Boundry 8 21 2 51.74 6 8.6 309 Derris indica 187 East Boundry 9 18 2 51.26 10 5.1 310 Melia azadirachta 508 East Boundry 9 19 3 146.82 10 14.6 311 Fabaceae 12 East Boundry 9 14 714.50 2.62 11 0.2 312 Melia azadirachta 12 East Boundry 11 22 1665.70 6.11 11 0.6 313 Saraca asoca 58 East Boundry 11 22 1665.70 6.11 11 0.6 314 Borassus flabellifer 34 East Boundry 13 42 6 48.18 11 4.4 315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 316 Tectona grandis 307 East Boundry 16 30 4 64.99 19 3.4 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 318 Bambusa JSW Power Plant 310.80 20.80 3.60				Jsw Canteen to						
307 Fabaceae 709 East Boundry 5				gate compound			750138.			
307 Fabaceae 709 East Boundry 5 14 5 54.75 3.6 15.4	306	Tamarindus indica	1800	boundry	18	24	05	2750.23	19	144.4
SW Power Plant 14112.8 308 Albizia lebbeck 185 East Boundry 8 21 2 51.74 6 8.6										
308 Albizia lebbeck 185 East Boundry 8 21 2 51.74 6 8.6	307	Fabaceae	709	•	5	14		54.75	3.6	15.4
JSW Power Plant JSW Power					_				_	
309 Derris indica 187 East Boundry 9 18 2 51.26 10 5.1	308	Albizia lebbeck	185		8	21		51.74	6	8.6
310 Melia azadirachta 508 East Boundry 9 19 3 146.82 10 14.6	200	Dounia indiae	107		0	10		F1 2C	10	F 1
310 Melia azadirachta 508 East Boundry 9 19 3 146.82 10 14.6 311 Fabaceae 12 East Boundry 9 14 714.50 2.62 11 0.2 312 Melia azadirachta 12 East Boundry 11 22 1665.70 6.11 11 0.6 313 Saraca asoca 58 East Boundry 13 33 4 64.79 11 5.9 314 Borassus flabellifer 34 East Boundry 13 42 6 48.18 11 4.4 315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 318 arundinacea 5050 South Boundry 4 13 2 180.89 2 88.2 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8 319 JSW Power Plant 13734.1	309	Derris indica	187	,	9	18		51.26	10	5.1
311 Fabaceae 12 East Boundry 9 14 714.50 2.62 11 0.2	310	Melia azadirachta	508		ο .	10		1/16 82	10	146
311 Fabaceae 12 East Boundry 9 14 714.50 2.62 11 0.2 312 Melia azadirachta 12 East Boundry 11 22 1665.70 6.11 11 0.6 313 Saraca asoca 58 East Boundry 13 33 4 64.79 11 5.9 314 Borassus flabellifer 34 East Boundry 13 42 6 48.18 11 4.4 315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 Bambusa JSW Power Plant 43 2 180.89 2 88.2 Bambusa JSW Power Plant 4 11 4922.86	310	IVIEIIA AZAGII ACIILA	308		9	19	3	140.02	10	14.0
312 Melia azadirachta 12 East Boundry 11 22 1665.70 6.11 11 0.6	311	Fabaceae	12		9	14	714.50	2.62	11	0.2
312 Melia azadirachta 12 East Boundry 11 22 1665.70 6.11 11 0.6 313 Saraca asoca 58 East Boundry 13 33 4 64.79 11 5.9 314 Borassus flabellifer 34 East Boundry 13 42 6 48.18 11 4.4 315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 Bambusa JSW Power Plant 49337.3 3 2 88.2 Bambusa JSW Power Plant 4 13 2 180.89 2 88.2 Bambusa JSW Power Plant 4 11 4922.86 18.05 2 8.8		. asaccac		•			7 - 1.00			0.1
313 Saraca asoca 58 East Boundry 13 33 4 64.79 11 5.9 314 Borassus flabellifer 34 East Boundry 13 42 6 48.18 11 4.4 315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 Bambusa JSW Power Plant 318 arundinacea 5050 South Boundry 4 13 2 180.89 2 88.2 Bambusa JSW Power Plant 319 4922.86 18.05 2 8.8 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8	312	Melia azadirachta	12		11	22	1665.70	6.11	11	0.6
313 Saraca asoca 58 East Boundry 13 33 4 64.79 11 5.9 314 Borassus flabellifer 34 East Boundry 13 42 6 48.18 11 4.4 315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 Bambusa JSW Power Plant 318 arundinacea 5050 South Boundry 4 13 2 180.89 2 88.2 Bambusa JSW Power Plant 319 4922.86 18.05 2 8.8 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8				JSW Power Plant						
314 Borassus flabellifer 34 East Boundry 13 42 6 48.18 11 4.4 315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 Bambusa JSW Power Plant 49337.3 49337.3 49337.3 4938.2 488.2 Bambusa JSW Power Plant 30 4 4922.86 18.05 2 8.8 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8 JSW Power Plant 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1	313	Saraca asoca	58	East Boundry	13	33		64.79	11	5.9
JSW Power Plant 125701. 24.2				JSW Power Plant			13140.0			
315 Tectona grandis 312 East Boundry 14 35 95 460.86 19 24.2 JSW Power Plant 127329. 127329. 127329. 127329. 19 24.5 JSW Power Plant 17725.9 17725.9 17725.9 19 3.4 Bambusa JSW Power Plant 49337.3 49337.3 180.89 2 88.2 Bambusa JSW Power Plant 319 11 4922.86 18.05 2 8.8 JSW Power Plant 13734.1 13734.1 13734.1 13734.1 13734.1	314	Borassus flabellifer	34	East Boundry	13	42	6	48.18	11	4.4
316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5				JSW Power Plant			125701.			
316 Tectona grandis 307 East Boundry 14 36 31 466.83 19 24.5 317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 Bambusa JSW Power Plant 49337.3 49337.3 49337.3 2 180.89 2 88.2 Bambusa JSW Power Plant 319 4922.86 18.05 2 8.8 JSW Power Plant 13734.1 13734.1 13734.1 13734.1 13734.1 13734.1	315	Tectona grandis	312	East Boundry	14	35	95	460.86	19	24.2
SW Power Plant 17725.9 17725.9 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.4 3.4 3.4 3.4 3.5 3.4 3.4 3.5 3.4 3.4 3.5 3.4 3.5 3.4 3.5										
317 Eccoliptics 43 East Boundry 16 30 4 64.99 19 3.4 Bambusa JSW Power Plant 49337.3 49337.3 2 180.89 2 88.2 Bambusa JSW Power Plant 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8 JSW Power Plant 13734.1 13734.1 13734.1 13734.1 13734.1	316	Tectona grandis	307	•	14	36		466.83	19	24.5
Bambusa JSW Power Plant 49337.3 2 180.89 2 88.2 Bambusa JSW Power Plant 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8 JSW Power Plant 13734.1 13734.1	24-	Example 1	40		4.0	2.0		64.00	40	2.6
318 arundinacea 5050 South Boundry 4 13 2 180.89 2 88.2 Bambusa JSW Power Plant 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8 JSW Power Plant 13734.1 13734.1 13734.1 13734.1 13734.1	31/	•	43	•	16	30		64.99	19	3.4
Bambusa JSW Power Plant 319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8 JSW Power Plant 13734.1	210		50E0		1	10		190 90	2	go 2
319 arundinacea 600 South Boundry 4 11 4922.86 18.05 2 8.8 JSW Power Plant 13734.1	219		3030	•	4	13		100.89		00.2
JSW Power Plant 13734.1	210		600		4	11	4922 86	12 05	2	22
	313	ar arrantacea	000		7	11		10.03		0.0
	320	Fabaceae	745	South Boundry	5	15	6	50.35	2.6	19.7

	Bambusa		JSW Power Plant			240063.			
321	arundinacea	11400	South Boundry	5	14	11	880.14	3.6	247.9
			JSW Power Plant			27421.5			
322	Melia azadirachta	780	South Boundry	7	14	2	100.54	4.6	22.1
			JSW Power Plant			11465.0			
323	Melia azadirachta	304	South Boundry	7	15	8	42.03	4.6	9.2
			JSW Power Plant			47715.9			
324	Fabaceae	720	South Boundry	9	16	8	174.94	10	17.4
			JSW Power Plant			53773.5			
325	Albizia lebbeck	720	South Boundry	9	18	4	197.15	10	19.6
			JSW Power Plant			20743.7			
326	Melia azadirachta	238	South Boundry	9	21	6	76.05	11	6.9
			JSW Power Plant	_		35087.0			
327	Pithecellobium dulce	323	South Boundry	10	21	3	128.64	11	11.6
			JSW Power Plant	_		18720.6			
328	Pithecellobium dulce	151	South Boundry	11	20	4	68.64	11	6.2
			JSW Power Plant			36104.0			
329	Albizia lebbeck	292	South Boundry	11	20	9	132.37	11	12.0
			JSW Power Plant			26776.5			
330	Saraca asoca	151	South Boundry	11	28	0	98.17	11	8.9
			JSW Power Plant			40491.2			
331	Ficus religiosa	223	South Boundry	12	24	4	148.45	11	13.4
	Ü		JSW Power Plant			94242.3			
332	Tectona grandis	307	South Boundry	13	33	6	345.52	11	31.3
	<u> </u>		JSW Power Plant			107773.			
333	Fabaceae	461	South Boundry	14	22	85	395.13	12	32.8
			JSW Power Plant			76388.1			
334	Cocos nucifera	190	South Boundry	14	35	1	280.06	19	14.7
			JSW Power Plant			81931.5			
335	Tectona grandis	187	South Boundry	14	38	6	300.39	19	15.8
			Lime Storage						
336	Fabaceae	12	sheed south	9	14	714.50	2.62	10	0.3
			Lime Storage						
337	Eucalyptus	12	sheed south	14	36	4973.80	18.24	19	1.0
			load center						
338	Terminalia Catappa	120	substation-4	4	11	984.57	3.61	2	1.8
			load center						
339	Pongamia pinnata	180	substation-4	5	12	3228.09	11.84	3.6	3.3
			load center						
340	Eucalyptus	14	substation-4	14	16	2535.37	9.30	17	0.5
			load center			24090.5			
341	Pithecellobium dulce	32	substation-4	23	25	8	88.32	19	4.6
									0.006
342	Casuarina Tree	7	Main Canteen	1	10	3.646	0.013	2	5
									0.020
343	Casuarina Tree	23	MAIN GATE	1	10	11.545	0.042	2	6
244	C	450			4.0		_	_	0.135
344	Casuarina Tree	150	MAIN GATE AREA	1	10	75.956	0.278	2	8

345 Casuarina Tree 120 MAIN GATE AREA 1 10 60.764 0.223 2 7 7 7 7 7 7 7 7 7		I	I	1		1				0.108
346 Casuarina Tree 48 MAIN GATE AREA 1 10 24,306 0.089 2 5 0.014	345	Casuarina Tree	120	MAIN GATE AREA	1	10	60.764	0.223	2	
347 Casuarina Tree 16										0.043
347 Casuarina Tree	346	Casuarina Tree	48	MAIN GATE AREA	1	10	24.306	0.089	2	
348 Casuarina Tree 156 MAIN GATE AREA 1 10 78.994 0.290 2 3 3 3 4 4 4 4 4 4 4	2.47	Constitution Total	4.6	NAAINI CATE AREA	4	40			_	
348 Casuarina Tree	347	Casuarina Tree	16	MAIN GATE AREA	1	10	7.899	0.029	2	_
Section Sect	348	Casuarina Tree	156	MAIN GATE AREA	1	10	78.994	0.290	2	
State							70.551	0.230		_
350 Fabaceae 547 MRSS EAST 6 16 3 56.37 3.6 15.9 351 Fabaceae 175 MRSS EAST 7 13 5702.38 20.91 4.6 4.6 4.6 352 Fabaceae 34 MRSS EAST 9 16 2226.75 8.16 10 0.8 353 Melia azadirachta 54 MRSS EAST 10 18 5021.13 18.41 11 1.7 354 Cocos nucifera 10 MRSS EAST 11 4.4 4.4 4869.35 17.85 19 0.9 355 Casuarina Tree 8 AERA 1 10 4.254 0.016 2 6 356 Casuarina Tree 396 New Land area 1 10 103.299 0.379 2 7 357 Casuarina Tree 396 New Land area 1 10 106.338 0.390 2 2 358 Casuarina Tree 210 New Land area 1 10 106.338 0.390 2 2 359 Casuarina Tree 618 New Land area 1 10 106.338 0.390 2 2 360 Melia azadirachta 1800 inside 3 12 8643.23 31.69 2 15.5 361 Fabaceae 1080 inside 3 12 8643.23 31.69 2 15.5 362 Fabaceae 5400 inside 5 13 3696.44 13.55 3.6 3.8 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 365 Bambusa New land deep 1 1691.459 25.35 10 2.5 366 Albizia lebbeck 170 inside 9 21 4 54.54 10 5.4 367 Melia azadirachta 50 inside 9 21 4 54.54 10 5.4 368 Melia azadirachta 50 inside 9 21 4 54.54 10 5.4 369 Albizia lebbeck 18 inside 9 21 4336.59 15.90 10 1.6 360 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 360 Melia azadirachta 106 inside 10 20 1862.25 6.83 11 0.6 360 Melia azadirachta 106 inside 10 20 1862.25 6.83 11 0.6 360 Melia azadirachta 106 inside 10 20 1862.25 6.83 11 0.6 360 Melia azadirachta 106 inside 10 20 1862.25 6.83 11 0.6 360 Melia azadirachta 106 inside 10 20 1862.25 6.83 11 0.6 360 Mel	349	Casuarina Tree	50	ROAD SIDE	1	10	25.521	0.094	2	6
STOP Fabaceae 175 MRSS EAST 7										
352 Fabaceae 34 MRSS EAST 9 16 2226.75 8.16 10 0.8										
353 Melia azadirachta 54 MRSS EAST 10 18 5021.13 18.41 11 1.7										
354 Cocos nucifera 10 MRSS EAST 14 44 4869.35 17.85 19 0.9 355 Casuarina Tree 8 AREA 1 10 4.254 0.016 2 6 356 Casuarina Tree 204 New Land 1 10 103.299 0.379 2 7 357 Casuarina Tree 396 New Land area 1 10 200.523 0.735 2 6 358 Casuarina Tree 210 New Land area 1 10 106.338 0.390 2 2 2 359 Casuarina Tree 618 New Land area 1 10 312.937 1.147 2 7 360 Melia azadirachta 1800 inside 3 12 8643.23 31.69 2 15.5 361 Fabaceae 1080 inside 3 12 8643.23 31.69 2 15.5 362 Fabaceae 5400 inside 3 12 5101.30 18.70 2 9.1 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 5 13 3696.44 13.55 3.6 3.8 365 Albizia lebbeck 170 inside 9 14 4572.79 16.77 10 1.7 366 Albizia lebbeck 170 inside 9 21 436.59 15.90 10 5.4 367 Melia azadirachta 50 inside 9 21 436.59 15.90 10 1.6 368 Melia azadirachta 50 inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 381 Acacia nidotica 190 inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 10 13782.2 370 Melia azadirachta 106 inside 10 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 10 12 13 50.53 11 4.6 381 Acacia nidotica 106 inside 10 12 13 50.53 11 4.6 382 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 383 Acacia nidotica 190 inside 10 20 1862.25 6.83 11 0.6 384 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 385 Albizia lebbeck 18 in	-						+			-
New Land area 1 10 103.299 0.379 2 7 7 7 7 7 7 7 7 7						+	+			
355 Casuarina Tree	334	Cocos nuchera	10		14	44	4009.33	17.63	19	
356 Casuarina Tree 204 New Land 1 10 103.299 0.379 2 7	355	Casuarina Tree	8		1	10	4.254	0.016	2	
357 Casuarina Tree 396 New Land area 1 10 200.523 0.735 2 6 6										0.184
357 Casuarina Tree 396 New Land area 1 10 200.523 0.735 2 6 0.190	356	Casuarina Tree	204	New Land	1	10	103.299	0.379	2	
358 Casuarina Tree 210 New Land area 1 10 106.338 0.390 2 2 2 0.559 359 Casuarina Tree 618 New Land area 1 10 312.937 1.147 2 7 7 7 360 Melia azadirachta 1800 inside 3 12 8643.23 31.69 2 15.5 361 Fabaceae 1080 inside 3 12 5101.30 18.70 2 9.1 362 Fabaceae 5400 inside 3 12 5101.30 18.70 2 9.1 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 3.8 3.64 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 3 366 Albizia lebbeck 170 inside 9 21 4376.8 367 Melia azadirachta 79 inside 9 21 6914.59 25.35 10 2.5 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 370 3			200		_					
358 Casuarina Tree 210 New Land area 1 10 106.338 0.390 2 2 359 Casuarina Tree 618 New Land area 1 10 312.937 1.147 2 7 360 Melia azadirachta 1800 inside 3 12 8643.23 31.69 2 15.5 361 Fabaceae 1080 inside 3 12 5101.30 18.70 2 9.1 362 Fabaceae 5400 inside 2 12 9823.24 36.01 3 11.8 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea 77 inside 9 14 4572.79 16.77 10 1.7 365 Albizia lebbeck 170 i	357	Casuarina Tree	396	New Land area	1	10	200.523	0.735	2	
359 Casuarina Tree	358	Casuarina Tree	210	New Land area	1	10	106 229	0.200	2	
359 Casuarina Tree 618 New Land area 1 10 312.937 1.147 2 7 360 Melia azadirachta 1800 inside 3 12 8643.23 31.69 2 15.5 361 Fabaceae 1080 inside 3 12 5101.30 18.70 2 9.1 362 Fabaceae 5400 inside 2 12 9823.24 36.01 3 11.8 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 Bambusa New land deep inside 9 14 4572.79 16.77 10 1.7 366 Albizia lebbeck 170 inside 9 21 4 54.54 10 5.4 367 Melia azadirachta 79 New land deep inside	330	Casaarina rree	210	IVEW Land area		10	100.558	0.330		
360 Melia azadirachta 1800 inside 3 12 8643.23 31.69 2 15.5 361 Fabaceae 1080 inside 3 12 5101.30 18.70 2 9.1 362 Fabaceae 5400 New land deep inside 2 12 9823.24 36.01 3 11.8 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 New land deep inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea 77 inside 9 14 4572.79 16.77 10 1.7 366 Albizia lebbeck 170 inside 9 21 4 54.54 10 5.4 367 Melia azadirachta 79 inside 9 21 6914.59 25.35 10 2.5 368 Melia azadirachta 50<	359	Casuarina Tree	618	New Land area	1	10	312.937	1.147	2	
361 Fabaceae 1080 New land deep inside 3 12 5101.30 18.70 2 9.1 362 Fabaceae 5400 inside 2 12 9823.24 36.01 3 11.8 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 New land deep inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea 77 inside 9 14 4572.79 16.77 10 1.7 New land deep inside 9 21 4876.8 4 10 5.4 366 Albizia lebbeck 170 inside 9 21 491.59 25.35 10 2.5 368 Melia azadirachta 50 New land deep inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10				New land deep						
361 Fabaceae 1080 inside 3 12 5101.30 18.70 2 9.1 362 Fabaceae 5400 inside 2 12 9823.24 36.01 3 11.8 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 Bambusa New land deep inside 9 14 4572.79 16.77 10 1.7 New land deep inside 9 21 4 54.54 10 5.4 New land deep inside 9 21 454.54 10 5.5 368 Melia azadirachta 79 inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 370	360	Melia azadirachta	1800	inside	3	12	8643.23	31.69	2	15.5
New land deep inside 2 12 9823.24 36.01 3 11.8				•						
362 Fabaceae 5400 inside 2 12 9823.24 36.01 3 11.8 363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea 77 inside 9 14 4572.79 16.77 10 1.7 366 Albizia lebbeck 170 inside 9 21 4 54.54 10 5.4 367 Melia azadirachta 79 inside 9 21 6914.59 25.35 10 2.5 368 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside	361	Fabaceae	1080		3	12	5101.30	18.70	2	9.1
363 Acacia nilotica 190 New land deep inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea New land deep inside 9 14 4572.79 16.77 10 1.7 New land deep inside 9 21 4 54.54 10 5.4 New land deep inside 9 21 6914.59 25.35 10 2.5 New land deep inside 9 21 4336.59 15.90 10 1.6 New land deep inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6	262	F .L	F 400	-	2	4.2	0022.24	26.04	2	11.0
363 Acacia nilotica 190 inside 5 13 3696.44 13.55 3.6 3.8 364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea New land deep inside 9 14 4572.79 16.77 10 1.7 New land deep inside 9 21 4 54.54 10 5.4 New land deep inside 9 21 6914.59 25.35 10 2.5 New land deep inside 9 21 4336.59 15.90 10 1.6 New land deep inside 10 20 1862.25 6.83 11 0.6 New land deep inside 11 21 3 50.53 11 4.6 New land deep inside 11 21 3 50.53 11 4.6	362	<u> </u>	5400		2	12	9823.24	36.01	3	11.8
364 Musa paradisiaca 43 New land deep inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea New land deep inside 9 14 4572.79 16.77 10 1.7 366 Albizia lebbeck 170 New land deep inside 9 21 4 54.54 10 5.4 367 Melia azadirachta 79 Inside 9 21 6914.59 25.35 10 2.5 368 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 New land deep Inside 11 21 3 50.53 11 4.6	363	Acacia nilotica	190	•	5	13	3696 44	13 55	3.6	3 8
364 Musa paradisiaca 43 inside 7 14 1518.73 5.57 4.6 1.2 Bambusa arundinacea 77 inside 9 14 4572.79 16.77 10 1.7 New land deep inside 9 21 4 54.54 10 5.4 New land deep inside 9 21 6914.59 25.35 10 2.5 New land deep inside 9 21 4336.59 15.90 10 1.6 New land deep inside 10 20 1862.25 6.83 11 0.6 New land deep inside 11 21 3 50.53 11 4.6 New land deep inside 11 21 3 50.53 11 4.6	303	Acadia imotica	130		3	15	3030.44	15.55	3.0	3.0
Bambusa Transide Section Sec	364	Musa paradisiaca	43	·	7	14	1518.73	5.57	4.6	1.2
365 arundinacea 77 inside 9 14 4572.79 16.77 10 1.7 366 Albizia lebbeck 170 inside 9 21 4 54.54 10 5.4 367 Melia azadirachta 79 inside 9 21 6914.59 25.35 10 2.5 368 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 New land deep inside 11 21 3 50.53 11 4.6										
366 Albizia lebbeck 170 inside 9 21 4 54.54 10 5.4 367 Melia azadirachta 79 inside 9 21 6914.59 25.35 10 2.5 368 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 New land deep inside 10 20 1862.25 6.83 11 0.6 New land deep 13782.2 13782.2 370 11 21 3 50.53 11 4.6 New land deep 10 20 13782.2 3 50.53 11 4.6	365		77	·	9	14	4572.79	16.77	10	1.7
367 Melia azadirachta 79 inside 9 21 6914.59 25.35 10 2.5 368 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 New land deep 13782.2 13782.2 13782.2 13782.2 13782.2 1486 10 10 10 10 10 4.6 10 11 10 10 10 10 10 10 10 10 <td></td> <td></td> <td></td> <td>New land deep</td> <td></td> <td></td> <td>14876.8</td> <td></td> <td></td> <td></td>				New land deep			14876.8			
367 Melia azadirachta 79 inside 9 21 6914.59 25.35 10 2.5 368 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 New land deep inside 10 20 1862.25 6.83 11 0.6 New land deep 13782.2 13782.2 13782.2 13782.2 13782.2 14.6 New land deep New land deep 11 21 3 50.53 11 4.6	366	Albizia lebbeck	170	inside	9	21	4	54.54	10	5.4
368 Melia azadirachta 50 New land deep inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 New land deep inside 11 21 3 50.53 11 4.6 New land deep lan				•						
368 Melia azadirachta 50 inside 9 21 4336.59 15.90 10 1.6 369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 New land deep 13782.2 13782.2 11 4.6 New land deep 11 21 3 50.53 11 4.6	367	Melia azadirachta	79		9	21	6914.59	25.35	10	2.5
369 Albizia lebbeck 18 New land deep inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 New land deep New land deep 11 21 3 50.53 11 4.6	200	Malia assalina da c	F.0	•	0	24	4226.50	15.00	40	1.6
369 Albizia lebbeck 18 inside 10 20 1862.25 6.83 11 0.6 370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 New land deep New land deep 10	368	iviella azadirachta	50		9	21	4336.59	15.90	10	1.6
New land deep 13782.2	360	Alhizia lehheck	1Ω		10	20	1862 25	6 83	11	0.6
370 Melia azadirachta 106 inside 11 21 3 50.53 11 4.6 New land deep New land deep 11 21 3 50.53 11 4.6	303	אוטוצומ ובטטבנג	10		10	20		0.03	11	0.0
New land deep	370	Melia azadirachta	106	•	11	21		50.53	11	4.6
		2.2.2.5				_	-	-	-	
	371	neam	3778	The state of the s	1	12	3230.27	11.84	10	1.2

			New land deep			19263.8			ſ
372	Melia azadirachta	148	inside	11	21	0	70.63	11	6.4
			New land deep						
373	Cocos nucifera	18	inside	13	33	5522.01	20.25	11	1.8
			New land deep						
374	Cocos nucifera	19	inside	14	34	7201.77	26.40	15	1.8
		_	New land deep			17790.7			
375	Cocos nucifera	40	inside	14	39	4	65.23	19	3.4
			New land deep						
376	Ficus benghalensis	22	inside	17	26	8476.58	31.08	19	1.6
	<u> </u>		New land deep			56690.3			
377	Cocos nucifera	96	inside	17	39	6	207.84	19	10.9
			New R&D						
378	Fabaceae	67	entrance	6	15	1766.10	6.48	3.6	1.8
			New R&D						
379	Fabaceae	22	entrance	9	16	1431.48	5.25	11	0.5
			New R&D						
380	Derris indica	23	entrance	10	16	1881.21	6.90	11	0.6
			New R&D						
381	Melia azadirachta	20	entrance	12	21	3186.68	11.68	11	1.1
			New R&D			27364.6			
382	Roystonea regia	192	entrance	14	13	1	100.33	11	9.1
383	Fabaceae	212	New R&D North	5	14	4472.75	16.40	3.6	4.6
384	Derris indica	98	New R&D North	9	16	6521.18	23.91	11	2.2
						13966.1			
385	Melia azadirachta	113	New R&D North	11	20	9	51.20	11	4.6
						12644.1			
386	Cocos nucifera	19	New R&D North	16	48	6	46.36	19	2.4
207		7.0		47	40	55011.3	204.60	40	10.6
387	Tectona grandis	76	New R&D North	17	48	8	201.69	19	10.6
388	Casuarina Tree	60	New RESERVOIR	1	10	20.202	0.444	2	0.054
300	Casualilla lifee	00	New RESERVOIR	1	10	30.382	0.111	2	0.163
389	Casuarina Tree	180	New Reservoir	1	10	91.147	0.334	2	0.103
303	Casaarina 11CC	100	Newland	_	10	31.147	0.554		
390	Fabaceae	150	opposite	5	14	2573.61	9.44	2.6	3.7
330	rabaccac	130	Newland			15414.4	3.11	2.0	3.7
391	Albizia lebbeck	170	opposite	9	22	5	56.51	10	5.6
331	7 HOIZIG TODOCCIX	170	Newland			29560.4	30.31		3.0
392	Borassus flabellifer	74	opposite	14	36	1	108.38	16	6.8
332			Newland			161500.			5.5
393	Albizia lebbeck	672	opposite	14	22	81	592.11	19	31.1
			Newland			31392.4			
394	Melia azadirachta	114	opposite	14	24	6	115.09	19	6.0
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Newland			44479.1			
395	Borassus flabellifer	110	opposite	14	35	5	163.07	19	8.6
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							="	0.061
396	Casuarina Tree	68	OHC AREA	1	10	34.636	0.127	2	9
397	Terminalia Catappa	18	OHC Entrance	11	20	2228.65	8.17	11	0.7

398	Fabaceae	12	OHC Entrance	14	25	3300.96	12.10	12	1.0
200	6	40	OUC Factoria	1.6	40	11853.9	42.46	10	2.2
399	Saraca asoca	18	OHC Entrance OHC Entrance	16	48	0	43.46	19	2.3
400	Melia azadirachta	6	south	16	26	2130.97	7.81	19	0.4
			OHC Entrance				7.01		
401	Fabaceae	2	south	18	35	1463.35	5.37	19	0.3
402	Saraca asoca	19	Old guest house	13	48	8587.58	31.48	11	2.8
403	Saraca asoca	12	Old guest house	14	49	6519.89	23.90	17	1.4
404	Canan muniform	42	Old suset bases	4.4	20	19408.0	74.46	10	2.7
404	Cocos nucifera	43	Old guest house	14	39	8	71.16	19	3.7
405	Fabaceae	1279	Old gust house East	5	13	24939.3	91.43	3.6	25.8
103	rabaccac	1273	Old gust house		13	14518.8	31.13	3.0	23.0
406	Melia azadirachta	194	East	9	18	5	53.23	10	5.3
			Old gust house			13713.5			
407	Saraca asoca	79	East	11	25	7	50.28	11	4.6
			Old gust house			16566.0			
408	Eucalyptus	54	East	13	33	4	60.74	11	5.5
409	Carica Papaya	31	Old gust house Front	7	23	1747.81	6.41	4.6	1.4
409	Carica Papaya	31	Old gust house	,	23	93426.3	0.41	4.0	1.4
410	Mangifera indica	720	Front	8	35	4	342.53	8	42.6
	- 6		Old gust house			35322.4			
411	Melia azadirachta	180	Front	11	31	0	129.50	11	11.7
			Old gust house			50253.4			
412	Saraca asoca	180	Front	11	44	1	184.24	11	16.7
440		- 4	Old gust house	4.4		0540.47	24.22		2.0
413	Saraca asoca	54	Front	11	23	8519.17	31.23	11	2.8
414	Saraca asoca	41	Old gust house Front	14	38	17166.1 4	62.94	16	3.9
717	Saraca asoca	71	Old gust house		30	16838.6	02.54	10	3.3
415	Fabaceae	56	Front	14	26	5	61.74	19	3.2
			Old gust house			41820.9			
416	Cocos nucifera	86	Front	14	42	7	153.33	19	8.0
			Old gust house			34460.0			
417	Fabaceae	4200	North	4	11	4	126.34	2	61.6
410	Горогоо	2000	Old gust house	_	12	55867.7	204.02	2.6	F 7 7
418	Fabaceae	2866	North Old gust house	5	13	6	204.83	3.6	57.7
419	Derris indica	186	North	5	13	3626.26	13.29	3.6	3.7
			Old gust house			149577.		5.0	
420	Albizia lebbeck	1800	North	9	20	74	548.40	11	49.6
			Old gust house			17679.8			
421	Tamarindus indica	180	North	10	19	3	64.82	11	5.9
			Old gust house			35088.3			
422	Fabaceae	211	North	12	22	9	128.64	11	11.6
422	Coope nuclifare	40	Old gust house	1.4	25	18537.8	67.07	4 -	4.5
423	Cocos nucifera	48	North	14	35	3	67.97	15	4.5

424	Saraca asoca	113	Old gust house North	14	38	47324.3 6	173.51	16	10.8
424	Saraca asoca	113		14	36	-	1/3.31	10	10.6
425	Melia azadirachta	190	Old gust house North	14	16	33382.3 4	122.39	17	7.2
423	IVICIIA AZAGITACITA	190		14	10	4	122.33	17	7.2
			Old gust house			40426.9			
426	Fabaceae	2074	West Boundry line	5	13	3	148.22	3.6	41.8
720	Tabaccac	2074		,	15		140.22	3.0	71.0
			Old gust house West Boundry			54849.0			
427	Albizia lebbeck	734	line	9	18	1	201.09	10	20.0
127	7 HOIZIG TEDDECK	731	Old gust house		10		201.03	10	20.0
			West Boundry			41881.7			
428	Fabaceae	504	line	9	20	7	153.55	11	13.9
			Old gust house			-			
			West Boundry			22719.5			
429	Melia azadirachta	220	line	10	20	0	83.30	11	7.5
			Old gust house						
			West Boundry						
430	Ficus religiosa	14	line	11	22	1998.84	7.33	11	0.7
			Old gust house						
			West Boundry			40611.4			
431	Cocos nucifera	101	line	14	35	0	148.89	19	7.8
			P 2 belt conveyor						
432	Roystonea regia	30	west	9	18	2240.56	8.21	11	0.7
433	Fabaceae	103	PCTL Entrance	6	15	2712.22	9.94	3.6	2.8
434	Melia azadirachta	20	PCTL Entrance	7	14	717.18	2.63	4.6	0.6
						13147.6			
435	Fabaceae	336	PCTL Entrance	7	16	2	48.20	4.6	10.6
436	Fabaceae	18	PF -1 East	9	16	1192.90	4.37	10	0.4
437	Melia azadirachta	30	PF -1 East	11	22	4164.26	15.27	11	1.4
438	Tectona grandis	60	PF -1 East	17	39	35431.4 7	129.90	19	6.8
439	Tectona grandis	18	PF -1 Last	16	38	9371.63	34.36	19	1.8
440	Ficus religiosa	1	PF -1 south	25	19	783.70	2.87	19	0.2
441	Fabaceae	456	PF -1 West	5	12	8177.84	29.98	3.6	8.4
442	Fabaceae	97	PF -1 West	9	16	6441.66	23.62	11	2.1
443	Melia azadirachta	53	PF -1 West	10	22	6015.67	22.06	11	2.0
143	IVICIIA AZAGII ACITEA	33	PF 2 ground	10	22	0013.07	22.00	11	2.0
444	Casuarina	246	hopper	4	11	2018.37	7.40	2	3.6
+- 	Casaariia	270	PF 2 ground			2010.57	,,,,,		3.0
445	Fabaceae	180	hopper	6	15	4730.62	17.34	3.6	4.9
<u> </u>		100	PF 2 ground	<u> </u>		26859.5	_,	3.0	5
446	Fabaceae	518	hopper	8	16	20033.3	98.48	6	16.3
			PF 2 ground	-					
447	Melia azadirachta	30	hopper	8	21	2291.04	8.40	8	1.0
448	Fabaceae	120	PF 2 hopper east	5	13	1906.15	6.99	2.6	2.7
449	Pithecellobium dulce	300	PF 2 hopper east	5	13	5848.80	21.44	3.6	6.0
450	Fabaceae	62	PF 2 hopper east	6	15	1639.95	6.01	3.6	1.7
451	Saraca asoca	24	PF 2 hopper east	11	42	7009.51	25.70	11	2.3

			plant south side			56907.5			
452	Fabaceae	2702	compount	5	14	9	208.64	3.6	58.8
			plant south side						
453	Ficus benghalensis	1	compount	36	39	3271.75	12.00	19	0.6
	0 1 1 1 1		PM - 2 Hopper						
454	Fabaceae	25	south	9	19	1988.08	7.29	10	0.7
			PM - 2 Hopper				112		
455	Pithecellobium dulce	40	south	9	20	3290.71	12.06	11	1.1
			PM - 2 Hopper						
456	Fabaceae	20	south	9	20	1665.18	6.11	11	0.6
			PM - 2 Hopper						
457	Saraca asoca	19	south	16	34	8937.30	32.77	19	1.7
458	Fabaceae	456	PTCL Office	5	13	7243.37	26.56	2.6	10.4
459	Manilkara Zapota	31	PTCL Office	5	13	608.28	2.23	3.6	0.6
460	Terminalia Catappa	65	PTCL Office	5	13	1263.34	4.63	3.6	1.3
461	Terminalia Catappa	22	PTCL Office	6	14	528.47	1.94	3.6	0.5
						11743.7	_		
462	Albizia lebbeck	480	PTCL Office	6	14	9	43.06	3.6	12.1
						11038.1			
463	Fabaceae	420	PTCL Office	6	15	1	40.47	3.6	11.4
						37304.8			
464	Albizia lebbeck	720	PTCL Office	8	16	8	136.77	6	22.6
						28538.2		l _	
465	Fabaceae	551	PTCL Office	8	16	4	104.63	6	17.3
166	Fabaceae	420	PTCL Office	0	16	21761.1	70.70	6	12.2
466		-	1	8	16	8	79.78	6	13.2
467	Melia azadirachta	60	PTCL Office	8	21	4582.09 24140.9	16.80	8	2.1
468	Melia azadirachta	306	PTCL Office	9	19	8	88.51	10	8.8
469	Melia azadirachta	79	PTCL Office	9	19	6248.25	22.91	10	2.3
470	Albizia lebbeck	82	PTCL Office	9	14	4858.59	17.81	10	1.8
470	/ (IDIZIG ICDDCCK	02	1 TCE Office			35699.2	17.01		1.0
471	Fabaceae	430	PTCL Office	9	20	2	130.88	10	13.0
						39887.4			
472	Albizia lebbeck	480	PTCL Office	9	20	0	146.24	10	14.6
473	Albizia lebbeck	36	PTCL Office	9	21	3142.99	11.52	10	1.1
						19943.7			
474	Albizia lebbeck	240	PTCL Office	9	20	0	73.12	11	6.6
						59984.0			
475	Melia azadirachta	460	PTCL Office	11	21	4	219.92	11	19.9
476	Tectona grandis	60	PTCL Office	11	22	8232.80	30.18	11	2.7
477	Albizia lebbeck	34	PTCL Office	11	22	4610.37	16.90	11	1.5
470	F .L	201	מדכן סננ:	4.4	22	69007.8	252.00	4.4	22.0
478	Fabaceae	301	PTCL Office	11	33	25,000	253.00	11	22.9
479	Cocos nucifera	F07	PTCL Office	1.1	20	256823.	0/1 50	10	40.4
4/9	Cocos nucilera	587	FICE OFFICE	14	38	94 357137.	941.59	19	49.4
480	Cocos nucifera	816	PTCL Office	14	38	59	1309.37	19	68.7
	SSSS Hachera	<u> </u>	. TOL OTTICE	+	 30		1303.37		30.7
!						10337.1		l	

Figure benghalensis 120 PTCL OFFICE 1	1						64746.1		l	1
AB3 Casuarina Tree 12	482	Ficus benghalensis	120	PTCL Office	18	31		237.38	19	12.5
483 Casuarina Tree 12 PTCL OFFICE 1 10 6.076 0.022 2 9 484 Casuarina Tree 24 PTCL OFFICE 1 10 12.153 0.045 2 7 485 Casuarina Tree 180 PTCL OFFICE 1 10 91.147 0.334 2 0.063 486 Casuarina Tree 240 PTCL OFFICE 1 10 91.147 0.334 2 0.30 487 Casuarina Tree 144 PTCL OFFICE 1 10 72.917 0.267 2 4 488 Casuarina Tree 60 PTCL OFFICE 1 10 30.382 0.111 2 3 489 Casuarina Tree 102 PTCL OFFICE 1 10 60.764 0.223 2 7 491 Casuarina Tree 162 PTCL OFFICE 1 10 50.766 0.223 2 7 492 Casuarina Tree <td< td=""><td></td><td>Treas sengment of</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Treas sengment of								
484 Casuarina Tree 24 PTCL OFFICE 1 10 12.153 0.045 2 7 485 Casuarina Tree 180 PTCL OFFICE 1 10 91.147 0.334 2 0 0.217 486 Casuarina Tree 144 PTCL OFFICE 1 10 72.917 0.267 2 4 487 Casuarina Tree 144 PTCL OFFICE 1 10 72.917 0.267 2 4 488 Casuarina Tree 60 PTCL OFFICE 1 10 30.382 0.111 2 3 489 Casuarina Tree 102 PTCL OFFICE 1 10 50.764 0.223 2 7 490 Casuarina Tree 162 PTCL OFFICE 1 10 80.764 0.223 2 7 491 Casuarina Tree 162 PTCL OFFICE 1 10 86.769 0.301 2 7 492 Casuarina Tre	483	Casuarina Tree	12	PTCL OFFICE	1	10	6.076	0.022	2	
ABS Casuarina Tree 180 PTCL OFFICE 1 10 91.147 0.334 2 0 0 0 0 0 0 0 0 0										0.021
A85 Casuarina Tree 180 PTCL OFFICE 1 10 91.147 0.334 2 0 0.217	484	Casuarina Tree	24	PTCL OFFICE	1	10	12.153	0.045	2	7
A86										0.163
A86 Casuarina Tree 240 PTCL OFFICE 1 10 121.529 0.446 2 3 0.130	485	Casuarina Tree	180	PTCL OFFICE	1	10	91.147	0.334	2	0
487 Casuarina Tree 144 PTCL OFFICE 1 10 72.917 0.267 2 4 488 Casuarina Tree 60 PTCL OFFICE 1 10 30.382 0.111 2 3 489 Casuarina Tree 102 PTCL OFFICE 1 10 51.650 0.189 2 4 490 Casuarina Tree 120 PTCL OFFICE 1 10 60.764 0.223 2 7 491 Casuarina Tree 162 PTCL OFFICE 1 10 82.032 0.301 2 7 492 Casuarina Tree 72 PTCL ROAD SIDE 1 10 82.032 0.301 2 7 0.065 492 2 2 493 Fabaceae 458 QAD south 5 13 8936.97 32.77 3.6 9.2 494 Fabaceae 34 QAD West 9 12 2560.77 9.72 10 10 0.5 498 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.217</td></t<>										0.217
AST Casuarina Tree 144 PTCL OFFICE 1 10 72.917 0.267 2 0.054 ASS Casuarina Tree 60 PTCL OFFICE 1 10 30.382 0.111 2 3 ASS Casuarina Tree 102 PTCL OFFICE 1 10 51.650 0.189 2 4 ASS Casuarina Tree 120 PTCL OFFICE 1 10 60.764 0.223 2 7 ASS Casuarina Tree 120 PTCL OFFICE 1 10 60.764 0.223 2 7 ASS Casuarina Tree 162 PTCL OFFICE 1 10 82.032 0.301 2 7 ASS Casuarina Tree 162 PTCL OFFICE 1 10 36.459 0.134 2 2 ASS Casuarina Tree 72 PTCL ROAD SIDE 1 10 36.459 0.134 2 2 ASS Casuarina Tree 72 PTCL ROAD SIDE 1 10 36.459 0.134 2 2 ASS Casuarina Tree 74 OAD West 9 19 2650.77 9.72 10 1.0 ASS Casuarina Tree 74 OAD West 9 19 2650.77 9.72 10 1.0 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 37.674 0.138 2 0.065 ASS Casuarina Tree 74 Pond 1 10 3	486	Casuarina Tree	240	PTCL OFFICE	1	10	121.529	0.446	2	
488 Casuarina Tree 60 PTCL OFFICE 1 10 30.382 0.111 2 3 489 Casuarina Tree 102 PTCL OFFICE 1 10 51.650 0.189 2 4 490 Casuarina Tree 120 PTCL OFFICE 1 10 60.764 0.223 2 7 491 Casuarina Tree 162 PTCL OFFICE 1 10 82.032 0.301 2 7 492 Casuarina Tree 72 PTCL ROAD SIDE 1 10 36.459 0.134 2 2 2 492 Casuarina Tree 72 PTCL ROAD SIDE 1 10 36.459 0.134 2 2 2 493 Fabaceae 458 QAD West 9 19 265.077 9.72 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0										0.130
ASS Casuarina Tree 60	487	Casuarina Tree	144	PTCL OFFICE	1	10	72.917	0.267	2	+
Asy Casuarina Tree 102 PTCL OFFICE 1 10 51.650 0.189 2 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 4 42 8712.70 10.092 4 4 42 8712.70 10.092 4 4 42 8712.70 10.90 1.0092 4 4 42 8712.70 10.90 1.0092 4 4 42 8712.70 10.90 1.0092 4										
489 Casuarina Tree 102 PTCL OFFICE 1 10 51.650 0.189 2 4 490 Casuarina Tree 120 PTCL OFFICE 1 10 60.764 0.223 2 7 491 Casuarina Tree 162 PTCL OFFICE 1 10 82.032 0.301 2 7 492 Casuarina Tree 72 PTCL ROAD SIDE 1 10 36.459 0.134 2 2 493 Fabaceae 458 QAD south 5 13 8936.97 32.77 3.6 9.2 494 Fabaceae 34 QAD West 9 19 2650.77 9.72 10 1.0 495 Melia azadirachta 12 QAD West 11 10 37.674 0.138 2 4 496 Casuarina Tree 74 Pond 1 10 37.674 0.138 2 4 497 Terminalia Catappa 18	488	Casuarina Tree	60	PTCL OFFICE	1	10	30.382	0.111	2	ļ
Age	400	Convenies Tree	102	DTCI OFFICE	1	10			_	
Age	489	Casuarina Tree	102	PICL OFFICE	1	10	51.650	0.189		
Age	100	Casuarina Tree	120	DTCI OFFICE	1	10	60.764	0.222	2	
491 Casuarina Tree 162 PTCL OFFICE 1 10 82.032 0.301 2 7 492 Casuarina Tree 72 PTCL ROAD SIDE 1 10 36.459 0.134 2 2 493 Fabaceae 458 QAD west 9 19 2650.77 9.72 10 1.0 495 Melia azadirachta 12 QAD West 11 21 1566.16 5.74 11 0.5 496 Casuarina Tree 74 Pond 1 10 37.674 0.138 2 4 497 Terminalia Catappa 18 opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 501 Albizia lebbeck	430	Casuarina free	120	FICE OFFICE	1	10	60.764	0.223		ļ
Age	491	Casuarina Tree	162	PTCL OFFICE	1	10	82 032	0 301	2	
492 Casuarina Tree 72 PTCL ROAD SIDE 1 10 36.4859 0.134 2 2 493 Fabaceae 458 QAD south 5 13 8936.97 32.77 3.6 9.2 494 Fabaceae 34 QAD West 9 19 2650.77 9.72 10 1.0 495 Melia azadirachta 12 QAD West 11 21 1566.16 5.74 11 0.5 496 Casuarina Tree 74 Pond 1 10 37.674 0.138 2 4 497 Terminalia Catappa 18 opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck	131	Casaarina rree		1 102 011102	_		02.032	0.301	_	
493 Fabaceae 458 QAD south 5 13 8936.97 32.77 3.6 9.2 494 Fabaceae 34 QAD West 9 19 2650.77 9.72 10 1.0 495 Melia azadirachta 12 QAD West 11 21 1566.16 5.74 11 0.5 496 Casuarina Tree 74 Pond 1 10 37.674 0.138 2 4 497 Terminalia Catappa 18 opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck	492	Casuarina Tree	72	PTCL ROAD SIDE	1	10	36.459	0.134	2	
494 Fabaceae 34 QAD West 9 19 2650.77 9.72 10 1.0 495 Melia azadirachta 12 QAD West 11 21 1566.16 5.74 11 0.5 496 Casuarina Tree 74 Pond 1 10 37.674 0.138 2 4 497 Terminalia Catappa 18 Opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 8ailway gate opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 oppos	493	Fabaceae	458	QAD south	5	13	+		3.6	9.2
495 Melia azadirachta 12 QAD West 11 21 1566.16 5.74 11 0.5 496 Casuarina Tree 74 RO Plant, Guard Pond 1 10 37.674 0.138 2 4 497 Terminalia Catappa 18 opposite site opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 9 21 1571.50 5.76 10 0.6 502 Saraca asoca 18 opposite site 11 22 3497.98 12.82 11 1.7		Fabaceae					+			
R O Plant, Guard 1				1	†					
496 Casuarina Tree 74 Pond 1 10 37.674 0.138 2 4 497 Terminalia Catappa 18 opposite site opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7				+ '						
497 Terminalia Catappa 18 opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 Railway gate opposite site 11 22 3497.98 12.82 11 1.2 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 501 Albizia lebbeck 25 opposite site 11 45 5140.20 18.85 11 1.7 502 Saraca asoca 18 opposite site 11 23 1893.15 6.94 11 0.6 503 Melia azadirachta	496	Casuarina Tree	74	Pond	1	10	37.674	0.138	2	4
497 Terminalia Catappa 18 opposite site 8 16 932.62 3.42 6 0.6 498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 Railway gate opposite site 11 22 3497.98 12.82 11 1.2 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 501 Albizia lebbeck 25 opposite site 11 45 5140.20 18.85 11 1.7 502 Saraca asoca 18 opposite site 11 23 1893.15 6.94 11 0.6 503 Melia azadirachta				Railway gate						
498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 505 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 50	497	Terminalia Catappa	18	, ,	8	16	932.62	3.42	6	0.6
498 Albizia lebbeck 66 opposite site 9 20 5484.52 20.11 10 2.0 499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 505 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 50				Railway gate						
Railway gate opposite site 9 20 4188.18 15.36 10 1.5	498	Albizia lebbeck	66		9	20	5484.52	20.11	10	2.0
499 Pithecellobium dulce 50 opposite site 9 20 4188.18 15.36 10 1.5 500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 505 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 506 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 60				Railway gate						
500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 Railway gate 18 opposite site 14 36 7151.71 26.22 15 1.7 505 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 506 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 8ailway gate 18 opposite site 14 42 8712.70 31.94 19 1.7	499	Pithecellobium dulce	50	, ,	9	20	4188.18	15.36	10	1.5
500 Albizia lebbeck 18 opposite site 9 21 1571.50 5.76 10 0.6 501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 Railway gate 18 opposite site 14 36 7151.71 26.22 15 1.7 505 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 506 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 8ailway gate 18 opposite site 14 42 8712.70 31.94 19 1.7				Railway gate						
501 Albizia lebbeck 25 Railway gate opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 Railway gate opposite site 14 36 7151.71 26.22 15 1.7 S05 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 S06 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 S06 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 Railway gate 14 42 8712.70 31.94 19 1.7	500	Albizia lebbeck	18	, ,	9	21	1571.50	5.76	10	0.6
501 Albizia lebbeck 25 opposite site 11 22 3497.98 12.82 11 1.2 502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 505 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 506 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 506 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 506 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7										
502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 Railway gate Opposite site 11 23 1893.15 6.94 11 0.6 Railway gate Opposite site 14 36 7151.71 26.22 15 1.7 Railway gate Opposite site 14 39 5391.13 19.77 19 1.0 Railway gate Opposite site 14 42 8712.70 31.94 19 1.7 Railway gate Railway gate 21717.5 19 1.7	501	Albizia lebbeck	25	, -	11	22	3497.98	12.82	11	1.2
502 Saraca asoca 18 opposite site 11 45 5140.20 18.85 11 1.7 Railway gate Opposite site 11 23 1893.15 6.94 11 0.6 Railway gate Opposite site 14 36 7151.71 26.22 15 1.7 Railway gate Opposite site 14 39 5391.13 19.77 19 1.0 Railway gate Opposite site 14 42 8712.70 31.94 19 1.7 Railway gate Railway gate 21717.5 19 1.7				Railway gate						
503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 8ailway gate opposite site 14 39 5391.13 19.77 19 1.0 8ailway gate nopposite site 14 42 8712.70 31.94 19 1.7 Railway gate nopposite site 14 42 8712.70 31.94 19 1.7 Railway gate nopposite site 14 42 8712.70 31.94 19 1.7	502	Saraca asoca	18	, -	11	45	5140.20	18.85	11	1.7
503 Melia azadirachta 12 opposite site 11 23 1893.15 6.94 11 0.6 504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 Railway gate 12 opposite site 14 39 5391.13 19.77 19 1.0 Railway gate 14 42 8712.70 31.94 19 1.7 Railway gate 21717.5 21717.5 19 1.7										
504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 Railway gate opposite site 14 39 5391.13 19.77 19 1.0 Railway gate opposite site 14 42 8712.70 31.94 19 1.7 Railway gate Railway gate 21717.5 21717.5 26.22 15 1.7	503	Melia azadirachta	12		11	23	1893.15	6.94	11	0.6
504 Cocos nucifera 18 opposite site 14 36 7151.71 26.22 15 1.7 Railway gate 12 opposite site 14 39 5391.13 19.77 19 1.0 Railway gate Railway gate 2 8712.70 31.94 19 1.7 Railway gate 21717.5 26.22 15 1.7				• • •						
505 Cocos nucifera 12 Railway gate opposite site 14 39 5391.13 19.77 19 1.0 Railway gate opposite site 14 42 8712.70 31.94 19 1.7 Railway gate 21717.5 21717.5 31.94 19 1.7	504	Cocos nucifera	18	, -	14	36	7151.71	26.22	15	1.7
505 Cocos nucifera 12 opposite site 14 39 5391.13 19.77 19 1.0 Railway gate Railway gate 8712.70 31.94 19 1.7 Railway gate Railway gate 21717.5 21717.5				† · ·						
Railway gate Some conversion of the conversi	505	Cocos nucifera	12		14	39	5391.13	19.77	19	1.0
506 Cocos nucifera 18 opposite site 14 42 8712.70 31.94 19 1.7 Railway gate 21717.5										
Railway gate 21717.5	506	Cocos nucifera	18	, ,	14	42	8712.70	31.94	19	1.7
	507	Tamarindus indica	60	opposite site	17	24	5	79.62	19	4.2

508 Ficus benghalensis 12 opposite site 17 30 5440.62 19.95 509 Tectona grandis 132 opposite site 17 35 4 256.29 Railway gate 31774.4 35 3 116.49 Railway gate 15002.7 15002.7 511 Tamarindus indica 36 opposite site 18 24 6 55.00 Raw Material 10969.6 1	19 19 2.6 10	1.0 13.5 6.1 2.9 15.8
509 Tectona grandis 132 opposite site 17 35 4 256.29 Railway gate Railway gate 31774.4 35 3 116.49 Fall Tamarindus indica 36 opposite site 18 24 6 55.00 Raw Material 10969.6 10969.6 10969.6 15 3 40.22 Raw Material Sem Material 56802.3 19 2 208.25 Raw Material Raw Material 35631.1 35631.1	19 19 2.6 10	6.1 2.9 15.8
S10 Tectona grandis 60 opposite site 17 35 3 116.49 S11 Tamarindus indica 36 opposite site 18 24 6 55.00 Raw Material 10969.6 15 3 40.22 Raw Material 56802.3 56802.3 S13 Melia azadirachta 720 Yard North 9 19 2 208.25 Raw Material 35631.1	19 19 2.6 10	6.1 2.9 15.8
510 Tectona grandis 60 opposite site 17 35 3 116.49 Railway gate 15002.7 <td>19 2.6 10 11</td> <td>2.9</td>	19 2.6 10 11	2.9
S11 Tamarindus indica 36 opposite site 18 24 6 55.00 Raw Material 10969.6 15 3 40.22 Raw Material 56802.3 56802.3 S13 Melia azadirachta 720 Yard North 9 19 2 208.25 Raw Material 35631.1	19 2.6 10 11	2.9
511 Tamarindus indica 36 opposite site 18 24 6 55.00 Raw Material 10969.6 <td>2.6 10 11</td> <td>15.8</td>	2.6 10 11	15.8
512 Fabaceae 595 Yard North 5 15 3 40.22 Raw Material 56802.3 56802.3 56802.3 720 Yard North 9 19 2 208.25 Raw Material 35631.1 35631.1 35631.1 35631.1 35631.1	2.6 10 11	15.8
512 Fabaceae 595 Yard North 5 15 3 40.22 Raw Material 56802.3 56802.3 56802.3 720 Yard North 9 19 2 208.25 Raw Material 35631.1 35631.1 35631.1 35631.1 35631.1	10	
513 Melia azadirachta 720 Yard North 9 19 2 208.25 Raw Material 35631.1	10	
513 Melia azadirachta 720 Yard North 9 19 2 208.25 Raw Material 35631.1	11	20.7
Raw Material 35631.1	11	20.7
		ĺ
514 Albizia lebbeck 344 Yard North 10 20 3 130.63		11.8
	13	11.0
Raw Material 75869.6	1 1 3	21.2
515 Saraca asoca 222 Yard North 14 31 0 278.16		21.3
Raw Material 92435.6	10	17.0
516 Tectona grandis 211 Yard North 14 38 1 338.90	19	17.8
Raw Material 83968.9	40	16.2
517 Eucalyptus 175 Yard North 16 35 4 307.86	19	16.2
		20.0
518 Fabaceae 1068 Yard South 5 15 1 72.17	2.6	28.3
Raw Material		
519 Pithecellobium dulce 499 Yard South 5 15 9200.34 33.73	2.6	13.2
520 Fabaceae 811 Yard South 5 13 6 57.98	3.6	16.3
Raw Material		
521 Derris indica 319 Yard South 6 15 8388.96 30.76	3.6	8.7
Raw Material		
522 Terminalia Catappa 264 Yard South 7 13 8592.63 31.50	4.6	6.9
Raw Material 20800.2		
523 Melia azadirachta 551 Yard South 7 15 8 76.26	4.6	16.8
Raw Material 21751.9		
524 Melia azadirachta 576 Yard South 7 15 2 79.75	4.6	17.5
Raw Material 19486.5		
525 Ficus religiosa 223 Yard South 9 21 6 71.44	10	7.1
Raw Material 14243.7		
526 Saraca asoca 67 Yard South 12 28 5 52.22	11	4.7
Raw Material 38436.2		
527 Cocos nucifera 106 Yard South 14 33 8 140.92	13	10.8
Raw Material 54677.6		
528 Tectona grandis 144 Yard South 14 33 2 200.46	19	10.5
Raw Material 10871.3		
529 Saraca asoca 104 Yard West 9 25 7 39.86	11	3.6
Raw Material 55567.2		
530 Fabaceae 598 Yard West 10 18 3 203.73		18.4
Raw Material	11	Т
531 Tectona grandis 26 Yard West 11 31 5180.62 18.99	11	

			Raw Material			13187.0			
532	Saraca asoca	67	Yard West	11	31	3	48.35	11	4.4
			Raw Material			82748.0			
533	Melia azadirachta	395	Yard West	14	19	6	303.38	17	17.8
			Raw Material			21130.1			
534	Tectona grandis	54	Yard West	14	34	1	77.47	19	4.1
F 2 F	Carradina Tura	100	DO DI ANIT ADEA	4	10			2	0.097
535	Casuarina Tree	108	RO PLANT AREA	1	10	54.688	0.201	2	0.070
536	Casuarina Tree	78	RO PLANT AREA	1	10	39.497	0.145	2	6
		, , ,	RO PLANT ROAD	_		331.37	0.2.15		0.012
537	Casuarina Tree	13	SIDE	1	10	6.684	0.025	2	0
			RO PLANT ROAD						0.065
538	Casuarina Tree	72	SIDE	1	10	36.459	0.134	2	2
			Safety &						
F20	Fabaceae	1.4	environment	0	1.0	054.33	2.50	10	0.3
539	гарасеае	14	entrance	9	16	954.32	3.50	10	0.3
			Safety & environment						
540	Mangifera indica	18	entrance	10	22	2050.80	7.52	11	0.7
0.10			Safety &				7.02		0.7
			environment						
541	Tectona grandis	19	entrance	14	24	5097.11	18.69	19	1.0
			Safety &						
			environment						
542	Cocos nucifera	8	entrance	14	39	3773.79	13.84	19	0.7
			Safety &						
F 42	Tamainalia Catanaa	12	environment	7	4.5	452.47	1.66	4.6	0.4
543	Terminalia Catappa	12	south	7	15	453.17	1.66	4.6	0.4
			Safety & environment						
544	Fabaceae	30	south	9	18	2240.56	8.21	10	0.8
			Safety &						
			environment						
545	Fabaceae	18	south	11	21	2349.24	8.61	11	0.8
			Safety &						
			environment						
546	Melia azadirachta	24	south	11	23	3786.30	13.88	11	1.3
			Safety &						
	Davistanaa	60	environment	4.4	1.5	10280.7	27.60	4.4	,
547	Roystonea regia	60	south	14	16	6	37.69	11	3.4
			Safety & environment						
548	Melia azadirachta	7	south	14	24	1860.16	6.82	12	0.6
		,	Safety &				3.52		3.3
			environment						
549	Fabaceae	17	south	14	26	5015.77	18.39	19	1.0

			Safety & environment						
550	Tectona grandis	10	south	14	39	4312.91	15.81	19	0.8
			Safety &						
			environment						
551	Cocos nucifera	12	south	14	49	6782.24	24.87	19	1.3
			Scrap yard						
552	Terminalia Catappa	24	cooling tower	9	16	1641.01	6.02	8	0.7
			Scrap yard						
553	Albizia lebbeck	8	cooling tower	14	22	1964.63	7.20	12	0.6
			Scrap yard						
554	Albizia lebbeck	10	cooling tower	14	26	2866.15	10.51	19	0.6
	Tamainalia Catanaa	2.4	sinter Machine	0	10	2650.77	0.72	10	1.0
555	Terminalia Catappa	34	North	9	19	2650.77	9.72	10	1.0
556	Melia azadirachta	12	sinter Machine North	9	21	1047.66	3.84	10	0.4
330	Mena azaun acnta	12		9	21	1047.00	3.04	10	0.4
557	Fabaceae	31	sinter Machine North	9	20	2546.74	9.34	11	0.8
337	Tabaceae	31	sinter Machine	3	20	2340.74	3.34	11	0.8
558	Fabaceae	36	North	11	21	4698.49	17.23	11	1.6
330	Tubuccuc	30	Sinter Machine			1030.13	17.23		1.0
559	Fabaceae	49	plant 2 North	7	15	1857.98	6.81	4.6	1.5
	rabaccae		Sinter Machine	,		1007.00	0.01		1.5
560	Melia azadirachta	18	plant 2 North	8	21	1374.63	5.04	6	0.8
			Sinter Machine			11968.4			
561	Fabaceae	52	plant 2 south	14	21	5	43.88	17	2.6
562	Terminalia Catappa	18	Sinter plant	9	21	1548.78	5.68	10	0.6
563	Fabaceae	30	Sinter plant	9	21	2619.16	9.60	11	0.9
									0.217
564	Casuarina Tree	240	SINTER PLANT	1	10	121.529	0.446	2	3
									0.070
565	Casuarina Tree	78	SINTER PLANT	1	10	39.497	0.145	2	6
566	Casuarina Tree	84	Sinter Plant-II	1	10	42.535	0.156	2	0.1
5.67	Bambusa	064	Slag Crushing		40	6442.54	22.54		44.5
567	arundinacea	864	mining plant	4	10	6412.51	23.51	2	11.5
5.00	February	40	Slag Crushing	4.4	22	2400 55	0.46	44	0.0
568	Fabaceae	18	mining plant	11	22	2498.55	9.16	11	0.8
F.60	Melia azadirachta	10	Slag Crushing	12	21	2011 70	10.21	11	0.9
569		18	mining plant SP East	12 10	21	2811.78	10.31	11 11	
570 571	Fabaceae Fabaceae	22 37	SP cast	11	22	2460.96 5104.34	9.02 18.71	11	0.8 1.7
572	Melia azadirachta	18	SP south	11	21	2349.24	8.61	11	0.8
3/2	IVICIIA AZAUII ACIILA	10	or south	11		2343.24	0.01	11	0.8
573	Casuarina Tree	240	TEMPLE	1	10	121.529	0.446	2	3
				-			U-1-10		0.163
574	Casuarina Tree	180	TEMPLE	1	10	91.147	0.334	2	0
			TEMPLE AREA						0.499
575	Casuarina Tree	552	COMPUND SIDE	1	10	279.516	1.025	2	9

			TEMPLE AREA						0.380
576	Casuarina Tree	420	COMPUND SIDE	1	10	212.675	0.780	2	4
						12362.0			
577	Fabaceae	511	Temple East	5	16	9	45.32	3.6	12.8
			_			16241.9			
578	Fabaceae	462	Temple East	7	14	8	59.55	4.6	13.1
F.70	Tamain alia Catanaa	440	Tanania Fast	_	4.5	15498.2	FC 03	4.6	12.5
579	Terminalia Catappa	410	Temple East	7	15	5 24122.8	56.82	4.6	12.5
580	Melia azadirachta	353	Temple East	9	16	8	88.44	8	11.0
581	Bauhinia purpurea	18	Temple East	9	14	1071.75	3.93	10	0.4
582	Tectona grandis	54	Temple East	9	19	4260.17	15.62	10	1.6
362	rectoria grandis		Temple Last	<u> </u>	15	13622.6	15.02	10	1.0
583	Albizia lebbeck	182	Temple East	9	18	3	49.94	11	4.5
			P 2 22		_	16311.3			
584	Melia azadirachta	218	Temple East	9	18	1	59.80	11	5.4
585	Pithecellobium dulce	61	Temple East	10	20	6331.66	23.21	11	2.1
						21738.4			
586	Fabaceae	191	Temple East	10	22	5	79.70	11	7.2
						19414.2			
587	Albizia lebbeck	170	Temple East	10	22	1	71.18	11	6.4
500	Taskana anandia	100	Tanania Fast	11	22	22571.6	02.75	11	7.5
588	Tectona grandis	108	Temple East	11	33	9 27887.2	82.75	11	7.5
589	Tectona grandis	106	Temple East	11	38	4	102.24	11	9.3
363	rectoria grandis	100	Temple Last	11	30	54825.6	102.24	11	3.3
590	Melia azadirachta	330	Temple East	12	22	1	201.01	11	18.2
			- P			130082.			
591	Saraca asoca	347	Temple East	14	34	03	476.92	13	36.5
						335027.			
592	Tectona grandis	720	Temple East	14	42	06	1228.31	16	76.5
593	Ficus religiosa	34	Temple East	14	24	8919.94	32.70	19	1.7
	_					85082.7			
594	Cocos nucifera	194	Temple East	14	38	8	311.94	19	16.4
505	Taskana anandia	266	Tanania Fast	47	45	249593.	045.00	10	40.0
595	Tectona grandis	366	Temple East	17	45	96	915.09	19	48.0
596	Fabaceae	548	Temple South	4	12	4928.83 10708.0	18.07	2	8.8
597	Fabaceae	443	Temple South	5	16	0	39.26	3.6	11.1
598	Terminalia Catappa	163	Temple South	5	12	2926.80	10.73	3.6	3.0
599	Derris indica	233	Temple South	5	12	4175.00	15.31	3.6	4.3
600	Roystonea regia	89	Temple South	5	14	1869.97	6.86	3.6	1.9
601	Tectona grandis	288	Temple South	5	14	6064.75	22.24	3.6	6.3
	. second Brandia		. cpic coutii			43108.4		3.3	1 3.5
602	Fabaceae	577	Temple South	9	18	5	158.05	10	15.7
			·			35400.9			
603	Melia azadirachta	474	Temple South	9	18	1	129.79	10	12.9
						17924.5			
604	Albizia lebbeck	240	Temple South	9	18	1	65.72	10	6.5
605	Bauhinia purpurea	55	Temple South	9	18	4122.64	15.11	11	1.4

1	1		1			55575.0			
606	Melia azadirachta	338	Temple South	12	22	8	203.75	11	18.4
						13951.2			
607	Albizia lebbeck	54	Temple South	14	24	1	51.15	12	4.2
						50666.0			
608	Tectona grandis	139	Temple South	14	33	0	185.76	13	14.2
						23874.2			
609	Eucalyptus	58	Temple South	14	36	5	87.53	19	4.6
610	Tostono grandis	47	Tomple Couth	16	20	25011.6 2	01.70	10	4.8
610	Tectona grandis	47	Temple South	10	39	16396.8	91.70	19	4.0
611	Ficus religiosa	18	Temple South	19	45	4	60.12	19	3.2
			. cp.c cca						0.304
612	Casuarina Tree	336	TOWNSHIP AREA	1	10	170.140	0.624	2	3
									0.271
613	Casuarina Tree	300	TOWNSHIP AREA	1	10	151.911	0.557	2	7
									0.184
614	Casuarina Tree	204	TOWNSHIP AREA	1	10	103.299	0.379	2	7
645		420	TO 14/4 (C) 11D 4 D 5 4	4	40				0.108
615	Casuarina Tree	120	TOWNSHIP AREA	1	10	60.764	0.223	2	7
616	Casuarina Tree	120	TOWNSHIP AREA	1	10	CO 7C4	0.222	2	0.108 7
010	Casuarina free	120	TOWNSTIIF AINLA	Τ.	10	60.764	0.223		0.163
617	Casuarina Tree	180	TOWNSHIP AREA	1	10	91.147	0.334	2	0.103
			TOWNSHIP		_	02.2.17			0.108
618	Casuarina Tree	120	RESERVIOR	1	10	60.764	0.223	2	7
619	Terminalia Catappa	120	wagon loco office	5	13	2339.52	8.58	3.6	2.4
620	Fabaceae	18	wagon loco office	10	22	2050.80	7.52	11	0.7
621	Albizia lebbeck	26	wagon loco office	11	21	3445.56	12.63	11	1.1
622	Melia azadirachta	30	wagon loco office	12	16	3609.47	13.23	11	1.2
623	Fabaceae	30	wagon loco office	14	22	7098.10	26.02	12	2.2
624	Cocos nucifera	12	wagon loco office	14	35	4634.46	16.99	15	1.1
625	Roystonea regia	14	wagon loco office	14	14	2277.87	8.35	17	0.5
C2C	Albinio Johnosti	22	wager lass effici	1.1	22	F101 10	10.03	10	1.0
626	Albizia lebbeck	22	wagon loco office	14	22	5191.10	19.03	19	1.0 0.108
627	Casuarina Tree	120	WAGON TIPPLER	1	10	60.764	0.223	2	7
02,	Casaarina ITCC	120	Water Reservoir		10	00.704	0.223		
628	Fabaceae	415	south Boundary	5	13	6595.28	24.18	2.6	9.5
1 220	Bambusa	.13	Water Reservoir	,		75322.1	210		3.3
629	arundinacea	4200	south Boundary	5	12	8	276.15	3.6	77.8
323		.250	Water Reservoir	<u> </u>		22742.8	_, 0.10	3.3	77.0
630	Fabaceae	1080	south Boundary	5	14	2	83.38	3.6	23.5
					<u> </u>				J I

i		1	Water Becarioir	İ	I	12201.0			
631	Fabaceae	631	Water Reservoir south Boundary	5	14	13291.9	48.73	3.6	13.7
031	Tabaceae	031	Water Reservoir	3	14	14025.6	40.73	3.0	13.7
632	Fabaceae	499	south Boundary	6	16	2	51.42	3.6	14.5
032	Tabaceae	433	Water Reservoir		10	15295.0	31.42	3.0	14.5
633	Fabaceae	295	south Boundary	8	16	0	56.08	6	9.3
033	Tabaceae	233	Water Reservoir	0	10	186524.	30.00	0	7.5
634	Fabaceae	3600	south Boundary	8	16	41	683.85	6	113.0
034	Tabaceae	3000	Water Reservoir	0	10	55873.8	003.03	0	113.0
635	Fabaceae	938	south Boundary	9	14	0	204.85	10	20.4
033	Tabaccac	330	Water Reservoir		1-7	62018.8	204.03	10	20.4
636	Fabaceae	830	south Boundary	9	18	1	227.38	10	22.6
030	Tabaccac	030	Water Reservoir		10	14957.7	227.50	10	22.0
637	Fabaceae	180	south Boundary	9	20	7	54.84	10	5.5
037	Tabaccac	100	Water Reservoir		20	,	34.04	10	3.3
638	Cassia fistula	18	south Boundary	9	20	1495.78	5.48	10	0.5
030	Cussia ristala	10	Water Reservoir		20	24487.9	3.40	10	0.5
639	Fabaceae	300	south Boundary	9	20	3	89.78	10	8.9
033	Tabaccac	300	Water Reservoir		20	18846.8	03.70	10	0.5
640	Melia azadirachta	227	south Boundary	9	20	0	69.10	11	6.3
0.0	Tricha azaan adirea		Water Reservoir			10253.9	03.10		0.0
641	Melia azadirachta	90	south Boundary	10	22	9	37.59	11	3.4
			Water Reservoir			23492.4	07.00		
642	Melia azadirachta	180	south Boundary	11	21	4	86.13	11	7.8
J			Water Reservoir			38527.6	00.20		7.0
643	Fabaceae	295	south Boundary	11	21	1	141.25	11	12.8
			Water Reservoir			29443.8			
644	Melia azadirachta	226	south Boundary	11	21	6	107.95	11	9.8
			Water Reservoir			51303.6			
645	Fabaceae	370	south Boundary	11	22	5	188.09	11	17.0
			Water Reservoir			25318.6			
646	Melia azadirachta	182	south Boundary	11	22	8	92.83	11	8.4
			Water Reservoir			42344.3			
647	Melia azadirachta	342	south Boundary	11	20	0	155.25	11	14.0
			Water Reservoir						
648	Melia azadirachta	52	south Boundary	11	21	6734.50	24.69	11	2.2
	Neolamarckia		Water Reservoir						
649	cadamba	52	south Boundary	11	21	6734.50	24.69	11	2.2
			Water Reservoir			35312.6			
650	Tamarindus indica	107	south Boundary	14	30	2	129.47	13	9.9
			Water Reservoir			112977.			
651	Fabaceae	301	south Boundary	14	34	82	414.21	15	27.5
			Water Reservoir			31269.1			
652	Saraca asoca	67	south Boundary	14	42	9	114.64	16	7.1
			Water Reservoir			23939.9			
653	Borassus flabellifer	48	south Boundary	14	45	0	87.77	17	5.1
			Water Reservoir			15965.4			
654	Borassus flabellifer	30	south Boundary	14	48	1	58.53	17	3.4

ĺ		I	Water Reservoir		l	21074.3			
655	Borassus flabellifer	40	south Boundary	14	48	21074.3	77.26	17	4.5
033	BOLASSUS HADEIIITEI	40	Water Reservoir	14	40	166122.	77.20	17	4.3
CEC.	Tostono grandis	343		14	42	166122.	609.05	19	32.0
656	Tectona grandis	343	south Boundary	14	42		609.05	19	32.0
			Water Reservoir			16187.0		4.0	
657	Cocos nucifera	31	south Boundary	14	45	8	59.35	19	3.1
			Water Reservoir						
658	Borassus flabellifer	8	south Boundary	14	49	4747.57	17.41	19	0.9
			Water Reservoir			56970.8			
659	Saraca asoca	101	south Boundary	14	49	5	208.87	19	11.0
			Water Reservoir			31198.3			
660	Cocos nucifera	55	south Boundary	14	49	2	114.38	19	6.0
			Water Reservoir			238941.			
661	Cocos nucifera	396	south Boundary	16	44	85	876.03	19	46.0
			Water Reservoir			173775.			
662	Tectona grandis	288	south Boundary	16	44	89	637.11	19	33.4
	-		Water Reservoir			62952.2			
663	Tectona grandis	102	south Boundary	16	45	5	230.80	19	12.1
	-		Water Reservoir			42436.8			
664	Ficus religiosa	94	south Boundary	17	30	6	155.59	19	8.2
			Water Reservoir			82748.0			
665	Tectona grandis	144	south Boundary	18	33	6	303.38	19	15.9
	Ü		Water Reservoir			650118.			
666	Tectona grandis	828	south Boundary	18	45	50	2383.53	19	125.1
			Water Reservoir			424370.			
667	Tectona grandis	696	south Boundary	18	35	21	1555.87	19	81.7
007	rectoria granais	175003	Journ Boundary				ration per a		5686
	Planted 2022-2023	10256					equestratio		12.3
					· -		<u> </u>		
	Total	185259		rota	carbon	sequestere	d per annui	TI	5699

Annexure-II

CPCB guidelines for Green Belt development

VII. Green Belt

- Green belt shall be developed in an area equal to 33% of the plant area with a native tree species in accordance with CPCB guidelines. The greenbelt shall inter alia cover the entire periphery of the plant
- ii. The project proponent shall prepare GHG emissions inventory for the plant and shall submit the programme for reduction of the same including carbon sequestration including plantation.

Ref: Annexure II III and IV.

F. No. 22-34/2018-IA.III

Government of India Ministry of Environment, Forest and Climate Change (Impact Assessment Division)

Annexure- III

Environment Celebration Activities by M/s.JSW

Tree Sapling 2022-2023

Tree Sapling -2022-2023

Annexure-IV

<u>List of Recommended species for further improvement</u> **

- 1. Acacia albida
- 2. Acacia aunculiformis
- 3. Acacta catechu
- 4. Acacia holosericea
- 5. Acacia nilottca
- 6. Acacia senegal
- 7. Albizia amara
- 8. Albizra lebbeck
- 9. Azadirachta rndtca
- 10.Oalberg1a SISSOO
- 11. Eucalyptus hybrid
- 12. Erythrina vanegata

- 13. Gliricidia sepium
- 14. Grewia tenax
- 15. Hardwickia binata
- 16.Leucaena latisiliqua
- 17. Pithecellobium dulce
- 18. Ztzyphus nummulan

** Ref: PAOBES/75/1999-2000
CENTRAL POLLUTION CONTROL BOARD
(Ministry of Environment & Forests, Govt. of India) Parivesh Bhawan, East Arjun Nagar

Delhi -110 032,India.

ANNEXURE 16 COPY OF THE ENVIRONMENTAL CLEARANCE DATED 10.02.2020

F. No. J-11011/281/2006-IA. II(I)

Government of India

Ministry of Environment, Forest and Climate Change

(Impact Assessment Division)

Indira Paryavaran Bhawan Jor Bagh Road, Aliganj, New Delhi - 110003

E-mail: dirind-moefcc@gov.in

Tel: 011-24695368

Dated:

10th February, 2020

To

Shri. BNS. Prakash Rao, Senior Vice President, M/s. JSW Steel Limited, Pottaneri, Mecheri Salem Works, Mettur, Salem. Tamil Nadu - 636453 Tel: 04298-272272; E-mail: d.ravichandar@jsw.in

Subject: Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at village Pottaneri & M.Kalipatti, Mecheri, Taluk Mettur, District Salem, Tamil Nadu -Environmental Clearance under para 7(ii) of the EIA Notification, 2006 regarding.

- 1. This refers to the online application of M/s JSW Steel Limited made vide proposal no. IA/TN/IND/104947/2019 dated 11/11/2019 along with copy of EIA/EMP report and Form – 2 seeking Environmental Clearance (EC) under the provisions of para 7(ii) of EIA Notification, 2006 for the project mentioned above. The proposed project activity is listed at Sl. No. 3(a) Metallurgical Industries (Ferrous and Non-ferrous) under Category "A" EIA Notification, 2006 and the project is appraised at the Central level.
- 2. The aforesaid proposal was considered in the 13th meeting of the Reconstituted Expert Appraisal Committee meeting held during 27-29th November, 2019. The EAC proceedings of the proposal is given as below:

Details submitted by the project proponent

3. The project of M/s. JSW Steel Works located in M. Kallipatti and Pottaneri Village, Mettur Tehsil, Salem District, Tamil Nadu was granted environment clearance for the expansion of crude steel capacity from 1.0 to 1.3 MTPA. and additional captive power plant of 1 x 30 MW vide letter No. J-11011/281/2006-IA. II (I) dated 07.07.2017. The Expansion project activities are scheduled in phased manner. At present Phase-I activities of the project are completed and CTO obtained on 25.06.19 for 1.15 MTPA steel production and 97 MW Captive power generation. Balance expansion activities are scheduled in phase II.

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu". Page 1 of 23

4. The implementation status of 1.3 MTPA existing EC are given in the table below:

S. No	Manufacturing Units	Capacit y at 1.0 MTPA	Proposed Expansio n 1.0 to 1.3 MTPA	Total Capacity after Expansion	Implementation Status
1	Coke Oven Plant -1(Non– Recovery Type)	0.50	-	0.5	In operation
2	Sinter Plant – 1 (20 Square Meter)	0.175	-	0	In operation
3	Sinter Plant – 2 (90 Square Meter)	1.06	-	1.06	In operation
4	Sinter Plant – 3 (90 Square Meter)		1.06	1.06	Yet to be installed
5	Blast Furnace – 1 (402 to 650 Cubic Meter)	0.367	0.316	0.683	Yet to be installed
6	Blast Furnace – 2 (550 to 650 Cubic Meter)	0.578	0.105	0.683	In operation
7	Energy Optimizing Furnace – 1	0.41	0.23	0.64	In operation
8	Energy Optimizing Furnace – 2	0.62	-	0.62	In operation
9	Ladle Furnace-1 with Common VD	45 T/heat	20 T/heat	65 T/heat	In operation
10	Ladle Furnace -2	65	-	65 T/heat	In operation
11	Ladle Furnace- 3 common VD	65 T/heat	-	65 T/heat	In operation
12	Ladle Furnace- 4	65	-	65 T/heat	In operation
13	Continuous Casting Machine-1	0.35	-	0.35	In operation
14	Continuous Casting Machine - 2	0.50	-	0.50	In operation
15	Continuous Casting Machine - 3	-	0.45	0.45	In operation
16	Bar & Rod Mill Augmentation	0.4	0.08	0.48	In operation
17	Blooming Mill	0.36	0.12	0.48	In operation
18	Pickling and Annealing Steel unit	- 131 - 15 1 1 - 14	0.06	0.06	Annealing unit is in operation. Pickling plant
19	Peeled and ground		0.04	0.04	0.01 MTPA in operation. 0.03 MTPA installation under
20	Air Separation Plant 1	150 T/day	-	150 T/day	In operation
21	Air Separation Plant 2	390 T/day	-	390 T/day	In operation

tai

S. No	Manufacturing Units	Capacit y at 1.0 MTPA	Proposed Expansio n 1.0 to 1.3 MTPA	Total Capacity after Expansion	Implementation Status
22	Air Separation Plant 3	-	250 T/day	250 T/day	Yet to be installed
23	Captive Power Plant 1	7 MW		7 MW	In operation
24	Captive Power Plant - 2	2 x 30 MW	-	2 x 30 MW	In operation
25	Captive Power Plant - 3	0	1 x 30 MW	1 x 30 MW	In operation

- 5. An amendment in the existing environmental clearance (EC) of 1.3 MTPA was requested for installation of 0.8 MTPA slag grinding unit and other few technological upgradation of existing facilities. The proposal was appraised in the 36th meeting of the reconstituted EAC (Industry-I) held on 9/10/2018 and ToR was prescribed on 09.11.2018. Thereafter, amendment to the ToR was requested to include few balancing and modification facilities in the existing ToR. The proposal was considered in the 6th meeting of the reconstituted EAC (Industry-I) held during on 30/04/2019 and MoEF&CC issued amendment to the existing ToR to include the proposed facilities vide letter dated 27/06/2019. Further, the Committee also recommended that the decision to consider the instant proposal under para 7(ii) (a) will be based on findings of the EIA report to be submitted to the Ministry by the project proponent. Thereafter, EAC will consider the proposal in its meeting exercising due diligence, inter-alia, and also ascertain the need for conduct of a fresh public consultation by the project proponent.
 - 6. Based on the ToRs prescribed for the project, JSWSL has submitted an application for grant of environmental clearance under clause 7 (ii) of the EIA notification 2006 to the Ministry vide online application no. IA/TN/IND/104947/2019 dated 11.11.2019.
 - 7. The proposed project is for value addition, modification in the existing facilities for emission reduction and balancing facilities without increasing the production capacity of 1.3 MTPA steel.
 - 8. The modification envisaged in the existing EC dated 7/7/2017 and the details of the value added facilities envisaged are given as below:

Modifications envisaged in the existing EC dated 7/7/2017

Manufacturing Facilities	Existing Capacity	Proposed Expansion for which EC has been issued	Total Capacity after Expansion	Modification
Coke Oven Plant -1 (Non – Recovery Type)	0.50	issueu	0.5	The existing weakened 80m RCC chimney of Battery 1, is being replaced with

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu". Page 3 of 23

Manufacturing Facilities	Existing Capacity	Proposed Expansion for which EC has been issued	Total Capacity after Expansion	Modification
				two nos. of MS refractory lined chimney of 75m height.
Sinter Plant – 2 (90 Square Meter)	1.06	maiste do un	1.06	Waste heat utilization:
Sinter Plant – 3 (90 SquareMeter)		1.06	1.06	About 6,00,000 m³/hr of hot air (275°C) planned to be diverted from sinter cooler of SP 2 & 3 to GGBS grinding unit to recover the sensible heat which is presently vented into atmosphere. Emission reduction: At present, Sinter machine-2 waste gas stack is operating at an average of 110 mg/Nm³ of SPM as against the norm of 150 mg/Nm³, which is planned to be revamped to meet 50 mg/Nm³ as an voluntary APC measures.
Blast Furnace – 1 (402 to 650 Cubic Meter) – Hot Metal	0.367	0.316	0.683	It is proposed to install 0.8 MTPA slag grinding unit to produce Ground
Blast Furnace – 2 (550 to 650 Cubic Meter) – Hot Metal	0.578	0.105	0.683	Granulated Blast furnace Slag (GGBS) as a value added facility.
Ladle Furnace - 1 with Common VD (45 T to 65 T)	45 T/heat	20 T/heat	65 T/heat	The existing primary de-dusting system of LRF 1 (38000 m³/hr) has been taken to common secondary

Manufacturing Facilities	Existing Capacity	Proposed Expansion for which EC has been issued	Total Capacity after Expansion	Modification
		Issued		de-dusting system of LRF's which is having designed capacity of 5,50,000 m³/hr but working at 4,00,000 m³/hr. The existing LRF-1 primary de-dusting stack of 30m height became redundant and planned to be used for CCM-3 billet grinding (surface preparation) fume extraction.
Ladle Furnace – 5 (65 T with VD)	-	-	65 T/heat (New)	Additional facility planned now. Since JSW Salem is producing special steels, the per heat process time increased from 30 min to 105 min due to vacuum degassing. Hence, additional LRF-5 is envisaged.
Continuous Casting Machine - 1	0.35	_	0.35	Additional stacks Since, CCM-2 i provided with aut
Continuous Casting Machine -2	0.5	-	0.5	cutter fume extraction system with stack, it is planned to provide the same facility to CCM-
Continuous Casting Machine - 3	-	0.45	0.45	& 3 APC measures. The height of the chimney will be 20m. In addition, grinding fume extraction facility will be provided with bag filters for CCM to 3 with stack height of 30m.
Pickling and Annealing Steel	-	0.06	0.06	A wet scrubber envisaged to scrub t

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu".

Dogg 5 of 23

0	ſ	
R	V	
1.		

Manufacturing Facilities	Existing Capacity	Proposed Expansion for which EC has been issued	Total Capacity after Expansion	Modification
unit				acid fumes generated from the acid bath as APC measures. Three hot water generators are envisaged to meet the following process requirement to minimize fresh acid consumption and to ensure ZLD in the proposed ETP. To maintain the acid temperature of 55° in the pickling bath. To maintain the treated spent acid temp. of 55° for reuse. To supply hot water to thermal fluidic system of evaporator for ETP to ensure ZLD
Captive Power Plant 2 (2 x 30 MW)	2X30 MW	-	2X30 MW	One coal-based boiler installed in the year 2006 with a capacity of 127 TPH is operating at emission concentration of SPM, SO ₂ & NOx with 70, 1000 and 600 mg/Nm ³ respectively. This unit has been planned to be upgraded, to meet the revised emission standard as per CPCB letter dated 16.04.2018 of 50, 600 and 300 mg/Nm ³ respectively.
Captive Power Plant 3 (1 x 30)	-	30 MW	30 MW	The total capacity of 30MW remains unaltered. Since, COP capacity remains same there is no additional waste gas is expected.

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu".

Manufacturing Facilities	Existing Capacity	Proposed Expansion for which EC has been issued	Total Capacity after Expansion	Modification
				The additional BF gas as expected due to expansion is planned to be diverted to SMS (VD Boilers) and various shops.
DG sets	3x625 KVA	1x1250 KVA	3x625 KVA and 1x1250 KVA	2x1250 KVA 1x1750 KVA 3x275 KVA 1x650 KVA 1x400 KVA The above DG sets are envisaged to meet the emergency conditions of plant black our requirements.

Installation of value added facilities

S.No.	Name of the unit	Production capacity envisaged	Purpose
i.	Paver block making facility	25000 Nos. of paver block/day	The utilization of the stee slag has been a major challenge in all integrated steel plants. Our R&D has successfully developed a technology for using stee slag in the manufacture of paver blocks. The study has established production paver blocks a 30% lower costs than with natural aggregates with lower use of cement and use of stee slag. It is proposed to install paver block making facility for 25000 Nos. of paver block/day for demonstration purposes. It is intended with its installation, entrepreneut will utilize this to supp good quality pavers for use

- Ry

	.01	
	Ka .	
1	18	

S.No.	. Name of the unit	Production capac envisaged	eity Purpose
			construction purposes.
ii.	Etching Lab	Nil	PP is receiving requests from their customers of special steels for the results of mace structure of steel products assess its internal soundness. In order to carry out this test the test samples of 25 mm thick will be collected from 160 to 310 mm round, 130 to 340/400 square and rectangle of bar products. The samples are to be immersed in hydrochloric acid in a tank of 100-liter volume for preparing the sample for further testing. It is proposed to install an acid fume extraction system to improve the work area for the laboratory personnel.
iii.	SMS slag crushing plant	Crushing unit of TPH capacity	It is proposed to install crushing unit of 50 TPF Capacity with suitable ai pollution control facilities fo crushing and separation o iron bearing material from slag.
iv.	Batching plant	Batching plant of 3 m ³ /hr capacity	The construction activity for the expansion units in the 1.3 MTPA steel plant expansion is under progress. For this purpose, it is proposed to install a batching plant within the steel works with suitable air pollution control facilities for catering to the ready mix

S.No.	Name of the unit	Production capacity envisaged	Purpose
			concrete for construction
v.	Coke oven plant	Installation of bag filter with associated equipment to capture the coke dust emission	Existing Coke oven, fugitive emissions are observed while transporting coke in the conveyors (width: 1200mm) whenever it is in operation. In order to control this visible emission, it is proposed to install a bag filter with associated equipment to capture the coke dust emission
vi.	Coke Oven Plant	Coke Oven Stack 2A (COP)	Coke Oven battery # 2 existing 80m RCC chimney is found weakened, will be
vii.	Coke Oven Plant	Coke Oven Stack 2B (COP)	replaced with two nos. of MS refractory lined chimney of 75m height.
viii.	Coke Oven Plant	Coke oven # III chimney	To maintain and control draft at ovens the existing stack height of 38m will be increased to 65m.
ix.	Coke Oven Plant	Waste Heat Recovery Boiler# III	It is envisaged that additional sensible heat source from COP battery # 3 and to meet the requirement the existing stack dia and height will be modified to 1.8m and 35m respectively.
x.	SMS – CCM# 3	Steam Exhaust System stack #2	To maintain draft in the casting area an additional steam exhaust stack will be provided with the height of 26m
xi.	Pickling plant ETP	Hot water generator to ATFD	It is anticipated that Agitated Thin Film Drier (ATFD) will be installed after evaporator of ETP. To supply heat source to ATFD a Hot water generator (HSD based) will be installed

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu".

S.No.	Name of the unit	Production capacity envisaged	Purpose
xii.	Pickling plant ETP	ETP plant ATFD vent	It is anticipated that there is a vent stack to release water vapor from ATFD.
xiii.	CPP II	ETP plant ATFD vent	It is proposed to install a ETP (ZLD) plant in CPP II and steam will be used for heating application. It is anticipated that there is a vent stack to release water vapor from ATFD.

- 9. The certified compliance report for the existing environmental clearance was obtained from Regional office, Chennai vide letter No. EP/12.1/2016-17/20/TN/1687 dated 18.10.2019 wherein the conditions related to installation of solar panel, implementation of ESC related activities are yet to be complied. In this regard, project proponent has submitted action taken report for the conditions which are partially completed vide letter JSWSL/ENVT/MoEF&CC/ROC/2019-20/112 dated 01.11.2019.
- 10. The total land available including township is 268.08 ha. The plant site is 237.28 ha and township area is 30.80 ha. The land has been classified as Industrial Land use. The land required for the proposed changes/facilities is about 5.36 ha and the same exists within the plant premises. Hence, no additional land is required for the proposed changes. The greenery is about 33.5% of the total land area. Geographically, the proposed plant is located at 11°49'30.00" N & 77°54'22.34" E to 11°48'44.80" N to 77°55'37.51" E. The entire area falls in Survey of India topo sheet nos. C43F13, C43F14 & C44A1, C44A2.
- 11. There are No National parks, Wildlife sanctuaries, Biosphere reserves, Tigers/Elephant reserves, Wildlife corridors etc. within 10 km from the project site. There is no water body passing through project site.
- 12. The raw materials used in the plant are Iron ore lumps and fines, Coking/Non-coking and thermal coals, Dolomite Quartzite, Dunite, Anthracite and lime stone. The requirement of raw materials remains the same as noted in the existing EC of 1.3 MTPA except the addition of 0.04 MTPA of lime stone for SO₂ control in coal based boiler.
- 13. An agreement already exists between PWD and JSW to utilize 5 MGD (22730 KLD) of raw water from downstream of Mettur dam. The total estimated water requirement after the modification and installation of value added facilities will be about 17727 KLD (3.9 MGD) against the existing consumption of 17007 KLD (3.74 MGD). The additional water requirement 0.16 MGD is mainly for the proposed LRF# 5. As per existing EC dated 7/7/2017, the estimated fresh water consumption is 4.45 MGD (20245 KLD). Due to the RO plant installation and Air Cooled Condenser installation in CPP II (Unit # 3), about 2500 KLD of fresh water consumption was reduced per day.

- 14. The power requirement of the proposed project is estimated as 11.5 MW, The existing Captive power plant of the industry have power generation capacity of 97 MW and power purchase agreement with TNEB is about 34 MW. After the proposed changes the total power requirement would be 101.5 MW which will be cater through CPP and TNEB grid.
- 15. Baseline Environmental Studies were conducted during winter season from December 1st 2018 to 28th February 2019. Ambient Air Quality Monitoring (AAQM) was carried out at eight (8) locations during December 2018 to February 2019 and the baseline data indicates the ranges of concentrations as PM₁₀ 54.71 to 70.98 μg/m³; SO₂ 9.55 to 14.68 μg/m³; NO₂ 19.63 to 27.53 μg/m³. AAQ modelling study emissions indicates that the maximum incremental GLCs after the proposed amendment is 4.17 μg/m³ with respect to PM₁₀, 0.62 μg/m³ with respect to SO₂, 0.38 μg/m³ with respect to NO₂. The proposed technological upgradation and other facilities will lead to reduction in pollution load SPM by 11.8%, SO₂ by 4.33% & NO_x by 8.14 %.
- 16. Ground water quality has been monitored at eight locations in the study area and analyzed. pH: 7.14 7.69, Total Hardness: 116.7 357.2 mg/l, Chlorides: 38.7 to 560.8 mg/l. Heavy metals are within the limits. Surface water samples were analyzed from 8 locations. Surface water samples were analyzed from 5 locations: pH: 6.52 7.56, Total Hardness: 126.0 216.2 mg/l, Chlorides: 32.4 to 85.3 mg/l. Heavy metals are within the limits.
- 17. Noise levels are in the range of 49.6 to 55.2 dB(A) for day time and 38.7 to 51.4 dB(A) for night time.
- 18. With the installation of the proposed facilities, there will be an additional waste generation from pollution control facilities viz dust about 3 TPD and will be reused in sinter plant. From pickling plant Phosphate Sludge about 0.27 TPD will be generated and the same will be used as fertilizer and also disposed to TSDF. Chemical Sludge/salt from the waste water treatment will be generated about 2.06 TPD and the same will be disposed to TSDF.
- 19. The Public hearing for the existing EC was held on 12.08.2016 as per the provisions laid down in the EIA Notification, 2006.
- 20. Total cost of the proposed modification and value addition facility is INR 234.2 crores. An allocation of Rs.13 Crores has been earmarked towards the implementation of CER related activities. The additional employment generation from the proposed project is about 50 nos.
- 21. Green belt is established in an area of 79.52 ha (33.50%)and further the green belt around the project will be developed (10000 saplings for the FY 2019-2020). Local and native tree species such as Mango, Neem, Eucalyptus, Ficus, Mahogany, Vagai, Teak, Puvarasu, Banyan, etc. are planted.
- 22. The resource requirement, pollution load comparison for the proposed modification vis-à-vis with existing EC dated 7/7/2017 is given as below.

A!

S.No	o. Description	UoM	At 1.3 MTPA as per Earlier EC	Installation of facilities proposed / modification	After EC modification and value added facilities	n Remarks	
1	Land Requirem	ent					
a.	Total land	На	268.08	0	268.08	No change	
2	Raw materials I						
a.	Iron ore fines	MTPA	1.47	0	1.47		
b.	Iron Ore Pellets	MTPA	0.5	0	0.5		
c.	Lump ore	МТРА	0.705	0	0.705		
d.	Coking/Non- coking coal	МТРА	0.947	0	0.947		
e.	Power plant coa	1 MTPA	0.172	0	0.172		
f.	Coke breeze for SP	MTPA	0.023	0	0.023		
g.	Dolomite	MTPA	0.147	0	0.147	No change	
h.	Quartzite	MTPA	0.039	0	0.039		
i.	Dunite	MTPA	0.039	0	0.039		
j.	Lime powder	MTPA	0.0945	0	0.0945		
k.	Mill scale	MTPA	0.158	0	0.158		
1.	Purchase coke	МТРА	0.156	0	0.156	MALL CONTRACT	
m.	Anthracite	MTPA	0.095	0	0.095		
n.	Limestone	МТРА	0.135	0.04	0.175	To control SO ₂ in CPP II coal based boiler	
	Total	МТРА	4.6805	0.04	4.7205		
	Power Requirem	ent					
	Power Requirement	MW	90	11.5		LRF #5, Slag grinding unit	
	Captive Power generation	MW	97	0	97		
		MW	34	0	34		
	Fotal power availability	MW	131	0	131		
F	Fuel Requirement	t					

S.No.	. Description	UoM	At 1.3 MTPA as per Earlier EC	Installation of facilities proposed / modification	After EC modification and value added facilities	Remarks	
a.	High Speed Diesel	KLD	1.7	1.6	3.3	Pickling plant and DG sets -	
b.	Liquid Petroleum Gas	TPD	1.0	0.015	1.015	emergency operations	
5	Water Requirem	ent					
a.	Approved water allocation	MGD (m³/day)	5.0 (22730)	0	5.0 (22730)	No Change	
ь.	Make up water consumption	MGD (m³/day)	4.45 (20245)	0.16 (720)	3.90 (17727)	LRF #5 with VD, Slag grinding unit. Water reduction due to installation of RO plant and Air Cooled Condenser in CPPII - unit III	
6	Man power Requ	uirement					
a.	Man power Requirement	Numbers	5341	50	5391	For slag grinding unit	
5	Waste water generation	m³/day	3040	235	3275	Additional effluent from RO 200 KLD,LRF#5 - 15 KLD and CPP II –unit III - 20 KLD. Zero waste water discharge by reuse in steel plant	
6	Pollution load			25 2 8		D 1	
	PM ₁₀	kg/hr	341.31	-40.34	300.97	Reduction in pollution	
	SO ₂	kg/hr	280.53	-12.16	268.37	due to	
	NO _x	kg/hr	207.01	-16.86	190.15	Technologica Modification.	

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu". Page 13 of 23

S.No.	Description	UoM	At 1.3 MTPA as per Earlier EC	Installation of facilities proposed / modification	After EC modification and value added facilities	Remarks
7	Waste generation					
	Non Hazardous					
	BF Slag	TPD	1350	0	1350	No change
	SMS slag	TPD	720	0	720	No change
	Dust, Sludge	TPD	197	2.66	199.66	Additional dust generation from dedusting systems which is proposed for modification. The same will be reused in sinter plant
	Hazardous	TPD	0.41	2.33	2.74	Additional generation from pickling unit-Phosphate sludge 0.27 TPD will be used as fertilizer and salt from ZLD ETP 2.06 TPD will be disposed to TSDF.

Hal

- 23. The proponent has mentioned that there is no court case or violation under EIA Notification to the project or related activity.
- 24. Name of the consultant: Vimta Labs Limited [Sr. No. 160, List of Accredited Consultant Organizations (Alphabetically) Rev. 81, Nov., 2019].

Observations of the Committee

25. The Committee noted that as per the findings of the EIA report, there is no change in land requirement and there is reduction in water requirement and pollution load due to the technological modification. Besides, the Committee also noted that the installation of value added facilities such as slag grinding unit and its allied facilities are environment friendly. Further, there will be no increase in the production capacity of 1.3 MTPA steel. Therefore, the Committee consider the instant proposal under para 7(ii) (a) of the EIA Notification, 2006 and dispense with the requirement of conducting fresh public consultation.

Recommendations of the Committee

26. In view of the foregoing and after detailed deliberations, the committee recommended the project for grant of Environmental Clearance under para 7(ii) of EIA Notification, 2006 subject to the following specific conditions in addition to the applicable general conditions as per the Ministry's Office Memorandum No. 22-34/2018-III dated 9/8/2018 for integrated steel plants.

i. Particulate emission from the rod mill of slag grinding unit shall be less than 10 mg/Nm³.

ii. Green belt shall be developed in an area of 85 ha (210 acres) in and around the plant in a time frame of two years.

Decision of MoEF&CC

27. The Ministry of Environment, Forest and Climate Change (MoEF&CC) has considered the application based on the recommendations of the Expert Appraisal Committee (Industry-I) and hereby decided to accord environmental clearance for project cited above under para 7(ii) of the EIA Notification, 2006 subject to the following specific and applicable general conditions prescribed in the Ministry's Office Memorandum No. 22-34/2018-III dated 9/8/2018 for Integrated Steel Plants.

A. Specific Conditions

- i. Particulate emission from the rod mill of slag grinding unit shall be less than 10 mg/Nm³.
- ii. Green belt shall be developed in an area of 85 ha (210 acres) in and around the plant in a time frame of two years.

B. General conditions

I. Statutory compliance:

- i. The project proponent shall obtain Consent to Establish / Operate under the provisions of Air (Prevention & Control of Pollution) Act, 1981 and the Water (Prevention & Control of Pollution) Act, 1974 from the concerned State Pollution Control Board/ Committee.
- ii. The project proponent shall obtain the necessary permission from the Central Ground Water Authority, in case of drawl of ground water / from the competent authority concerned in case of drawl of surface water required for the project.
- iii. The project proponent shall obtain authorization under the Hazardous and other Waste Management Rules, 2016 as amended from time to time.

R

II. Air quality monitoring and preservation

- i. The project proponent shall install 24x7 continuous emission monitoring system at process stacks to monitor stack emission with respect to standards prescribed in Environment (Protection) Rules 1986 vide G.S.R 277 (E) dated 31st March 2012(Integrated iron & Steel); G.S.R 414 (E) dated 30th May 2008 (Sponge Iron) as amended from time to time; S.O. 3305 (E) dated 7th December 2015 (Thermal Power Plants)as amended from time to time and connected to SPCB and CPCB online servers and calibrate these system from time to time according to equipment supplier specification through labs recognised under Environment (Protection) Act, 1986 or NABL accredited laboratories.
- ii. The project proponent shall monitor fugitive emissions in the plant premises at least once in every quarter through labs recognised under Environment (Protection) Act, 1986.
- iii. The project proponent shall install system to carryout Continuous Ambient Air Quality monitoring for common/criterion parameters relevant to the main pollutants released (e.g. PM10 and PM2.5 in reference to PM emission, and SO2 and NOx in reference to SO2 and NOx emissions) within and outside the plant area at least at four locations (one within and three outside the plant area at an angle of 120°each), covering upwind and downwind directions.
- iv. The cameras shall be installed at suitable locations for 24X7 recording of battery emissions on the both sides of coke oven batteries and videos shall be preserved for at least one-month recordings.
- v. Sampling facility at process stacks and at quenching towers shall be provided as per CPCB guidelines for manual monitoring of emissions.
- vi. The project proponent shall submit monthly summary report of continuous stack emission and air quality monitoring and results of manual stack monitoring and manual monitoring of air quality /fugitive emissions to Regional Office of MoEF&CC, Zonal office of CPCB and Regional Office of SPCB along with six-monthly monitoring report.
- vii. Appropriate Air Pollution Control (APC) system shall be provided for all the dust generating points including fugitive dust from all vulnerable sources, so as to comply prescribed stack emission and fugitive emission standards.
- viii. The project proponent shall provide leakage detection and mechanised bag cleaning facilities for better maintenance of bags.
 - ix. Secondary emission control system shall be provided at SMS Converters.
 - x. Pollution control system in the steel plant shall be provided as per the CREP Guidelines of CPCB.
- xi. Sufficient number of mobile or stationery vacuum cleaners shall be provided to clean plant roads, shop floors, roofs, regularly.

- xii. Recycle and reuse iron ore fines, coal and coke fines, lime fines and such other fines collected in the pollution control devices and vacuum cleaning devices in the process after briquetting/ agglomeration.
- xiii. The project proponent use leak proof trucks/dumpers carrying coal and other raw materials and cover them with tarpaulin.
- xiv. Facilities for spillage collection shall be provided for coal and coke on wharf of coke oven batteries (Chain conveyors, land based industrial vacuum cleaning facility).
- xv. Land-based APC system shall be installed to control coke pushing emissions.
- xvi. Monitor CO, HC and O₂ in flue gases of the coke oven battery to detect combustion efficiency and cross leakages in the combustion chamber.
- xvii. Vapour absorption system shall be provided in place of vapour compression system for cooling of coke oven gas in case of recovery type coke ovens.
- xviii. In case concentrated ammonia liquor is incinerated, adopt high temperature incineration to destroy Dioxins and Furans. Suitable NOx control facility shall be provided to meet the prescribed standards.
 - xix. The coke oven gas shall be subjected to desulphurization if the sulphur content in the coal exceeds 1%.
 - xx. Wind shelter fence and chemical spraying shall be provided on the raw material stock piles.
 - xxi. Design the ventilation system for adequate air changes as per ACGIH document for all tunnels, motor houses, Oil Cellars.
- xxii. The project proponent shall install Dry Gas Cleaning Plant with bag filter for Blast Furnace and SMS converter.
- xxiii. Dry quenching (CDQ) system shall be installed along with power generation facility from waste heat recovery from hot coke

III. Water quality monitoring and preservation

i. The project proponent shall install 24x7 continuous effluent monitoring system with respect to standards prescribed in Environment (Protection) Rules 1986 vide G.S.R 277 (E) dated 31st March 2012 (Integrated iron & Steel); G.S.R 414 (E) dated 30th May 2008 (Sponge Iron) as amended from time to time; S.O. 3305 (E) dated 7th December 2015 (Thermal Power Plants) as amended from time to time and connected to SPCB and CPCB online servers and calibrate these system from time to time according to equipment supplier specification through labs recognised under Environment (Protection) Act, 1986 or NABL accredited laboratories. The project proponent shall monitor

一起

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu".

Page 17 of 23

regularly ground water quality at least twice a year (pre and post monsoon) at sufficient numbers of piezometers/sampling wells in the plant and adjacent areas through labs recognised under Environment (Protection) Act, 1986 and NABL accredited laboratories.

- ii. The project proponent shall submit monthly summary report of continuous effluent monitoring and results of manual effluent testing and manual monitoring of ground water quality to Regional Office of MoEF&CC, Zonal office of CPCB and Regional Office of SPCB along with six-monthly monitoring report.
- iii. The project proponent shall provide the ETP for coke oven and by-product to meet the standards prescribed in G.S.R 277 (E) dated 31st March 2012 (Integrated iron & Steel); G.S.R 414 (E) dated 30th May 2008 (Sponge Iron) as amended from time to time; S.O. 3305 (E) dated 7th December 2015 (Thermal Power Plants) as amended from time to time as amended from time to time.
- iv. Adhere to 'Zero Liquid Discharge'.
- v. Sewage Treatment Plant shall be provided for treatment of domestic wastewater to meet the prescribed standards.
- vi. Garland drains and collection pits shall be provided for each stock pile to arrest the run-off in the event of heavy rains and to check the water pollution due to surface run off.
- vii. Tyre washing facilities shall be provided at the entrance of the plant gates.
- viii. CO₂ injection shall be provided in GCP of SMS to reduce pH in circulating water to ensure optimal recycling of treated water for converter gas cleaning.
- ix. The project proponent shall practice rainwater harvesting to maximum possible extent.
- x. Treated water from ETP of COBP shall not be used for coke quenching.
- xi. Water meters shall be provided at the inlet to all unit processes in the steel plants.
- xii. The project proponent shall make efforts to minimize water consumption in the steel plant complex by segregation of used water, practicing cascade use and by recycling treated water.

IV. Noise monitoring and prevention

 Noise level survey shall be carried as per the prescribed guidelines and report in this regard shall be submitted to Regional Officer of the Ministry as a part of six-monthly compliance report.

The ambient noise levels should conform to the standards prescribed under ii. E(P)A Rules, 1986 viz. 75 dB(A) during day time and 70 dB(A) during night time.

Energy Conservation measures V.

- The project proponent shall provide TRTs to recover energy from top gases of i. Blast Furnaces.
- Coke Dry Quenching (CDQ) shall be provided for coke quenching for both ii. recovery and non-recovery type coke ovens.
- Waste heat shall be recovered from Sinter Plants coolers and Sinter Machines. iii.
- Use torpedo ladle for hot metal transfer as far as possible. If ladles not used, iv. provide covers for open top ladles.
- Use hot charging of slabs and billets/blooms as far as possible. v.
- Waste heat recovery systems shall be provided in all units where the flue gas vi. or process gas exceeds 300°C.
- Explore feasibility to install WHRS at Waste Gases from BF stoves; Sinter vii. Machine; Sinter Cooler, and all reheating furnaces and if feasible shall be installed.
- Restrict Gas flaring to < 1%. viii.
- Provide solar power generation on roof tops of buildings, for solar light ix. system for all common areas, street lights, parking around project area and maintain the same regularly;
- Provide LED lights in their offices and residential areas. X.
- Ensure installation of regenerative type burners on all reheating furnaces. xi.

Waste management VI.

- An attrition grinding unit to improve the bulk density of BF granulated slag from 1.0 to 1.5 Kg/l shall be installed to use slag as river sand in construction industry.
- In case of Non-Recovery coke ovens, the gas main carrying hot flue gases to ii. the boiler, shall be insulated to conserve heat and to maximise heat recovery.
- Tar Sludge and waste oil shall be blended with coal charged in coke ovens iii. (applicable only to recovery type coke ovens).
- Carbon recovery plant to recover the elemental carbon present in GCP slurries iv. for use in Sinter plant shall be installed.

-AL

- v. Waste recycling Plant shall be installed to recover scrap, metallic and flux for recycling to sinter plant and SMS.
- vi. Used refractories shall be recycled as far as possible.
- vii. SMS slag after metal recovery in waste recycling facility shall be conditioned and used for road making, railway track ballast and other applications. The project proponent shall install a waste recycling facility to recover metallic and flux for recycle to sinter plant. The project proponent shall establish linkage for 100% reuse of rejects from Waste Recycling Plant.
- viii. 100% utilization of fly ash shall be ensured. All the fly ash shall be provided to cement and brick manufacturers for further utilization and Memorandum of Understanding in this regard shall be submitted to the Ministry's Regional Office.
- ix. Oil Collection pits shall be provided in oil cellars to collect and reuse/recycle spilled oil. Oil collection trays shall be provided under coils on saddles in cold rolled coil storage area.
- x. The waste oil, grease and other hazardous waste like acidic sludge from pickling, galvanising, chrome plating mills etc. shall be disposed of as per the Hazardous & Other waste (Management & Transboundary Movement) Rules, 2016. Coal tar sludge / decanter shall be recycled to coke ovens.
- xi. Kitchen waste shall be composted or converted to biogas for further use.

VII. Green Belt

- i. Green belt shall be developed in an area equal to 33% of the plant area with a native tree species in accordance with CPCB guidelines. The greenbelt shall inter alia cover the entire periphery of the plant
- ii. The project proponent shall prepare GHG emissions inventory for the plant and shall submit the programme for reduction of the same including carbon sequestration including plantation.

VIII. Public hearing and Human health issues

- Emergency preparedness plan based on the Hazard identification and Risk Assessment (HIRA) and Disaster Management Plan shall be implemented.
- ii. The project proponent shall carry out heat stress analysis for the workmen who work in high temperature work zone and provide Personal Protection Equipment (PPE) as per the norms of Factory Act.
- iii. Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.

Occupational health surveillance of the workers shall be done on a regular iv. basis and records maintained as per the Factories Act.

Corporate Environment Responsibility IX.

- The project proponent shall comply with the provisions contained in this Ministry's OM vide F.No. 22-65/2017-IA.III dated 1st May 2018, as applicable, regarding Corporate Environment Responsibility.
- The company shall have a well laid down environmental policy duly approve ii. by the Board of Directors. The environmental policy should prescribe for standard operating procedures to have proper checks and balances and to bring into focus any infringements/deviation/violation of the environmental / forest / wildlife norms / conditions. The company shall have defined system of reporting infringements / deviation / violation of the environmental / forest / wildlife norms / conditions and / or shareholders' / stake holders. The copy of the board resolution in this regard shall be submitted to the MoEF&CC as a part of six-monthly report.
- A separate Environmental Cell both at the project and company head quarter iii. level, with qualified personnel shall be set up under the control of senior Executive, who will directly to the head of the organization.
- Action plan for implementing EMP and environmental conditions along with iv. responsibility matrix of the company shall be prepared and shall be duly approved by competent authority. The year wise funds earmarked for environmental protection measures shall be kept in separate account and not to be diverted for any other purpose. Year wise progress of implementation of action plan shall be reported to the Ministry/Regional Office along with the Six Monthly Compliance Report.
- Self-environmental audit shall be conducted annually. Every three years third party environmental audit shall be carried out.
- All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Iron and Steel plants shall be implemented.

Miscellaneous X.

- The project proponent shall make public the environmental clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising it at least in two local newspapers of the District or State, of which one shall be in the vernacular language within seven days and in addition this shall also be displayed in the project proponent's website permanently.
- The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies, Panchayats and Municipal Bodies in addition to the relevant offices of the Government who in turn has to display the same for 30 days from the date of receipt.

Environmental Clearance for the project titled "Installation of 0.8 MTPA slag grinding unit and new facilities related to value addition and technological upgradation within the existing 1.3 MTPA Integrated Steel Plant premises by M/s JSW Steel Limited located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu". Page 21 of 23

- iii. The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and update the same on half-yearly basis.
- iv. The project proponent shall monitor the criteria pollutants level namely; PM₁₀, SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects and display the same at a convenient location for disclosure to the public and put on the website of the company.
- v. The project proponent shall submit six-monthly reports on the status of the compliance of the stipulated environmental conditions on the website of the ministry of Environment, Forest and Climate Change at environment clearance portal.
- vi. The project proponent shall submit the environmental statement for each financial year in Form-V to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently and put on the website of the company.
- vii. The project proponent shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities, commencing the land development work and start of production operation by the project.
- viii. The project authorities must strictly adhere to the stipulations made by the State Pollution Control Board and the State Government.
- ix. The project proponent shall abide by all the commitments and recommendations made in the EIA/EMP report, commitment made during Public Hearing and also that during their presentation to the Expert Appraisal Committee.
- x. No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEF&CC).
- xi. Concealing factual data or submission of false/fabricated data may result in revocation of this environmental clearance and attract action under the provisions of Environment (Protection) Act, 1986.
- xii. The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.
- xiii. The Ministry reserves the right to stipulate additional conditions if found necessary. The Company in a time bound manner shall implement these conditions.

- xiv. The Regional Office of this Ministry shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information/monitoring reports.
- xv. The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and Rules and any other orders passed by the Hon'ble Supreme Court of India / High Courts and any other Court of Law relating to the subject matter.
- xvi. Any appeal against this EC shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.
- 28. The project proponent shall obtain fresh environmental clearance in case of change in scope of the project if any.
- 29. This issues with the approval of Competent Authority.

Yours faithfully,

(A.K. Agrawal) Director

Copy to:-

- i. The Secretary, Department of Environment, Government of Tamil Nadu Secretariat, Chennai.
- ii. The Dy. Director General (C), Ministry of Environment, Forest and Climate Change, Regional Office (SEZ), Ist and IInd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai 34.
- iii. The Chairman, Central Pollution Control Board, Parivesh Bhawan, CBD-Cum-Office Complex, East Arjun Nagar, New Delhi-110 032.
- The Chairman, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai-600 032, Tamil Nadu.
- v. The Member Secretary, Central Ground Water Authority, West Block –II, Wing -3, Sector I, R.K.Puram, New Delhi 110086.
- vi. The District Collector, District, Salem, Government of Tamil Nadu.
- vii. Guard File/Record File/Monitoring File.

viii. MoEF&CC Website

(A.K. Agrawal) Director

ANNEXURE 17 COPY OF THE ENVIRONMENTAL CLEARANCE DATED 07.07.2017

F. No. J-11011/281/2006-IA.II (I)

Government of India
Ministry of Environment, Forest and Climate Change
(Impact Assessment Division)

Indira Paryavaran Bhawan Jor Bagh Road, Aliganj, New Delhi - 110003 E-mail: sharath.kr@gov.in Tel: 011-24695319

Dated: 7th July, 2017

To

M/s JSW Steel Ltd., Mecheri, Taluk Mettur, District Salem, Tamil Nadu - 636453 e-mail: d.ravichandar@jsw.in

Subject: Expansion of Integrated Steel Plant (1.0 MTPA to 1.3 MTPA) of M/s JSW Steel Ltd., located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu – Environmental Clearance under EIA Notification, 2006 Regarding.

Sir,

This has reference to your online application vide proposal no. IA/TN/IND/26508/2015, dated 28th October 2016 along with copies of EIA/EMP report seeking environmental clearance under the provisions of the EIA Notification, 2006 for the project mentioned above. The proposed project activity is listed at Sl. No. 3 (a) metallurgical (Ferrous and Non-Ferrous) under Category "A" under the provisions of EIA Notification 2006.

- 91
- 2.0 The proposed expansion of 1.0 to 1.3 MTPA Special Alloy Steel of M/s JSW Salem Works was initially received in the Ministry 16.01.2015 for obtaining Terms of Reference (ToR) as per EIA Notification, 2006. The project was appraised by the Expert Appraisal Committee (Industry-I) [EAC(I)] during its meeting held on 11.02.2015 and prescribed ToRs to the project for undertaking detailed EIA study for obtaining environmental clearance. Accordingly, the Ministry had prescribed ToRs to the project on 12.06.2015 vide letter No. J-11011/281/2006-IA.II(I). Based on the ToRs prescribed to the project, the project proponent applied for environmental clearance to the Ministry online on 28.10.2016. The proposal was placed in the 15th meeting of Appraisal Committee (Industry-I) [EAC(I)] held during 2nd 3rd February 2017. The committee sought additional information and the PP submitted reply on 28.03.2017.
- 3.0 M/s. JSW Salem Works operating 1.0 MTPA Integrated Steel Plant located at M. Kallipatti and Pottaneri Village, Mettur Tehsil, Salem District, Tamil Nadu for which environmental clearance was granted vide Lr. No. J-11011/281/2006-IA.II(I) dated 02.01.2007. Certified compliance status of existing plant was obtained vide Lr. No. EP/12.1/2016-17/20/TN/0162, dated 31.01.2017.

Page 1 of 11

4.0 Now, it is proposed to expand the capacity from 1.0 MTPA to 1.3 MTPA. The details of

existing and the proposed capacities are given below:

Sl. No.	Manufacturing Facilities	Existing Capacity	Proposed Expansion	Total Capacity after Expansion
1	Coke Oven Plant – 1 (Non-Recovery type)	0.5	-	0.5
2	Sinter plant – 1 (20 m ²)	0.175	-	0
3	Sinter plant – 2 (90 m ²)	1.06	-	1.06
4	Sinter plant – 3 (90 m ²)	-	1.06	1.06
5	Blast Furnace – 1 (402 to 650 m ³)	0.367	0.316	0.683
6	Blast Furnace – 2 (550 to 650 m ³)	0.578	0.105	0.683
7	Energy Optimizing Furnace - 1 (45 to 65 T)	0.41	0.23	0.64
8	Energy Optimising Furnace-2 (45 T)	0.62	-	0.62
9	Ladle Furnace – 1 (45 to 65 T)	45 T/heat	20 T/heat	65 T/heat
10	Ladle Furnace – 2 (65 T)	65 T/heat	-	65 T/heat
11	Ladle Furnace – 3 (65 T)	65 T/heat	-	65 T/heat
12	Ladle Furnace – 4 (65 T)	65 T/heat	-	65 T/heat
13	Continuous Casting Machine - 1	0.35	-	0.35
14	Continuous Casting Machine - 2	0.5		0.5
15	Continuous Casting Machine - 3	-	0.45	0.45
16	Bar & Rod Mill augmentation	0.4	0.08	0.48
17	Blooming Mill augmentation	0.36	0.12	0.48
18	Pickling and Annealing steel unit	-	0.06	0.06
19	Peeled and ground	-	0.04	0.04
20	Air separation plant – 1 (150 T/day)	150 T/day	-	150 T/day
21	Air separation plant – 2 (390 T/day)	390 T/day	-	390 T/day
22	Air separation plant – 3 (250 T/day)	-	250 T/day	250 T/day
23	Captive power plant – 1	7 MW	-	7 MW
24	Captive power plant – 2	2 X 30 MW	-	2 X 30 MW
25	Captive power plant – 3	-	30 MW	30 MW

- 5.0 The total available plant site is 237.28 ha and township is 30.80 ha. The land required for the proposed expansion project is 11.74 ha, out of total plant site and township area, scrub land is 37.89 ha, vegetation area is 47.83 ha, open scrub is 27.19, built-up area is 69.27 ha, water bodies like rainwater harvesting pond, guard pond etc is 5.34 ha, open land is 62.50 ha, stock yard is 3.82 ha, roads 9.57 ha and rocky terrain 4.711 ha. No forest land is involved. The entire land has been already acquired for the project. No river/stream passes through the project area. It has been reported that no water body exist around the project and no modification/diversion in the existing natural drainage pattern at any stage has not been proposed.
- 6.0 The topography of the area is slightly undulating and reported to lie between 11⁰ 48' 16" to 11⁰ 49' 2" N latitude and 77⁰ 0' 54" to 77⁰ 55' 43" E longitude in Survey of India topo sheet No. 58 E/13, 58 E/14, 58 I/1 and 58 I/2, at an elevation of 339 to 368 m AMSL. The ground water table is reported to range between 1.0 to 31.23 m below the land surface during March to May 2015. Based on hydro-geological studies, it has been reported that the radius of influence of pumped out water will be 60 m. Further, the stage of groundwater development is reported to be 0% and 100% in core and buffer zone respectively and thereby these are designated as critically exploited areas.
- 7.0 No national park/wildlife sanctuary/biosphere reserve/tiger reserve/elephant reserve etc. are reported in the core and buffer zone of the project. The area also does not report to form corridor for Schedule-I fauna.

8.0 The raw material requirement for the project are listed below:

Sl.	Raw material	Present	Post Exp.	Source
No.		Quantity (MTPA)		
1	Iron ore fines	0.845	1.47	Indigenous/Imported
2	Iron ore pellets	NA	0.5	Indigenous source
3	Lump ore	0.806	0.705	Indigenous/Imported
4	Coking coal	0.585	0.585	Imported
5	Non-coking coal for COP	0.147	0.147	Imported
6	Non-coking coal for PCI	0.147	0.215	Imported
7	Power plant coal	0.172	0.172	Indigenous/Imported
8	Coke breeze for SP	0.023	0.023	In house
9	Limestone	0.08	0.135	Imported/indigenous
10	Dolomite	0.091	0.147	Indigenous
11	Quartzite	0.030	0.039	Indigenous
12	Dunite	0.030	0.039	Indigenous
13	Lime powder	0.0585	0.0945	Imported/indigenous
14	Mill scale	0.097	0.158	Indigenous
15	Purchase coke	0	0.156	Imported
16	Anthracite	0.039	0.095	Imported

9.0 The proposed expansion of 0.3 MTPA Integrated Steel Plant (ISP) has been contemplated to adopt conventional BF (Blast Furnace) - EOF (Energy Optimizing Furnace) - CC (Continuous Casting) and RM (Rolling Mill) route. In expansion, additional 1 X 30 MW using the WHR boilers of COP and BF gas is planned.

- 10.0 The targeted production capacity of the proposed expansion is 1.3 MTPA. The ore for the plant would be procured from imported. The ore transportation will be done through rail.
- 11.0 An agreement exists between PWD and JSW to utilize 5 MGD of raw water from downstream of river Cauvery. The present requirement is about 3.17 MGD of raw water, which is met from the intake well located at downstream of Mettur dam which meets the 1 MTPA capacity of steel plant and captive power plant of 67 MW. Total fresh water requirement after expansion will be to the tune of about 4.4 MGD.
- 12.0 The average power demand of the plant after expansion is estimated to be about 90 MW. It is expected that the power to the tune of 97 MW will be generated from the steel plant facilities after expansion. It is proposed to meet the entire energy requirement from the captive sources taking the support of state electricity grid for stability. Provision will be made to sell out the surplus power if any, through the grid.
- 13.0 Ambient air quality monitoring has been carried out at 8 locations during March to May 2015 and the data submitted indicated: PM_{10} (23.28 $\mu g/m^3$ to 76.0 $\mu g/m^3$), $PM_{2.5}$ (8.90 to 34.83 $\mu g/m^3$), SO_2 (1.21 to 9.50 $\mu g/m^3$) and NO_x (11.41 to 60.76 $\mu g/m^3$). The results of the modelling study indicates that the maximum increase of GLC for the proposed expansion project is 83.0 $\mu g/m^3$ with respect to the PM_{10} , 10.6 $\mu g/m^3$ with respect to the SO_2 , 20.5 $\mu g/m^3$ with respect to the NO_x . There is no habitant in the core zone of the project. No R&R is involved.
- 14.0 Samples of ground (8) and surface (4) water samples were collected during monitoring season. The results indicate that most of parameters are within the prescribed norms of groundwater except for total hardness, calcium and TDS. The reason could be attributable to mixing of surface water. The area is encountered by hard rock overlined by sedimentary rock which may contain calcium and magnesium and leads to increase in hardness. Whereas, the surface water parameters are meeting the norms.
- 15.0 It has been reported that a total of 80 TPD of scrap waste will be generated due to the expansion project from CCM and rolling mill, and the entire waste will be dumped in the earmarked dump yard. It has been already developed that an area of 78.9 ha as green belt around the project site to attenuate the noise levels and trap the dust generated due to the project development activities.
- 16.0 The Public hearing for the project was held on 12.08.2016 for production of 1.0 to 1.3 million TPA of Special Alloy Steels, in the existing premises under the chairmanship of District Collector, Salem. The issues raised during the public hearing were employment to the local people; pollution due to the project; water scarcity; etc.
- 17.0 The capital cost of the project is Rs. 1025 Crores and the capital cost for environmental protection measures is proposed as Rs. 50.5 Crores. The annual recurring cost towards the environmental protection measures is proposed as Rs. 8.05 Crores. The project is scheduled to be completed in a period of 36 months.
- 18.0 The manpower working in existing project are 5041 including 4000 contractual employees. It has been planned to retain the existing man power for the proposed expansion programme. The company had spent Rs. 455.04 Lakhs for development of region as a part of CSR in last four financial years.

19.0 The proponent has mentioned that there is no court case to the project or related activity. There is no violation under EIA Notification, 2016.

20.0 The proposal was considered in the 15^{th} meeting of Expert Appraisal Committee (Industry-I) [EAC(I)] held during $2^{nd}-3^{rd}$ February 2017. Based on the presentation made and discussions held, the Committee desired additional information. The project proponent has submitted reply on 28.03.2017. The revised list of raw materials along with the source of the raw

material given as follows:

materi	al given as follows:			
Sl. No.	Raw material	Present Quantity (MTPA)	Post Exp. Quantity(MTPA)	Source
1	Iron ore fines	0.845	1.47	Jharkhand
2	Iron ore pellets	NA	0.5	Karnataka
3	Lump ore	0.806	Contract Maria	Monitoring committee, Karnataka
4	Coking coal	0.585	0.585	Australia/Russia
5	Non-coking coal for COP	0.147	0.147	Australia/Russia
6	Non-coking coal for PCI	0.147	0.215	Australia/Russia
7	Power plant coal	0.172	0.172	Australia/Russia
8	Coke breeze for SP	0.023	0.023	In-house
9	Limestone	0.08	0.135	Oman
10	Dolomite	0.091	0.147	Tamil Nadu
11	Quartzite	0.030	0.039	Tamil Nadu, Andhra Pradesh
12	Dunite	0.030	0.039	South Africa
13	Lime powder	0.0585	0.0945	Malaysia
14	Mill scale	0.097	0.158	Tamil Nadu
15	Purchase coke	0	0.156	Tamil Nadu
16	Anthracite	0.039	0.095	Australia/Russia

N

- 21.0 It was informed that the iron ore lumps purchase through "Monitoring committee of Karnataka", Auction No: 107 for a quantity of about 20000 MT. The iron ore fines quantity of about 150000 MT is being purchased from M/s. Rungta mines, Jharkhand.
- 22.0 The Effluent Treatment Plant (ETP) is designed for 920 m³/hr capacity with inlet suspended solids level of 2500 ppm and Outlet suspended solid level of 50 ppm.

23.0 The revised table on the cost component for environmental pollution control measures is given below:

Sl.	Item	Capital Cost (Rs in	Recurring cost per
No		Crores)	annum (Rs in Crores)
1	Air Pollution Control	30	4
2	Water Pollution Control	1	0.2
3	Solid Waste Management	10	1
4	Noise Pollution Control	2	0.2
5	Occupational health	3	0.3
6	Environmental survey and sampling	5	0.5
	Total	51	6.2

24.0 The cost break up for the ESC component along with the time line to implement is given below:

	Activity wise fund Allocation	on in Rs in						
SI.No	Crores.		Commitment period (Year)				ar)	Total
	Description of activities	Numbers	1	II	111	IV	V	
1	Toilets	2000	0.5	0.75	0.75	0.5	0.5	3
2	Health centre	1	0.25	0.25	0.25	0.25		1
3	Community hall	2		0.5	0.5			1
4	Hospital	1	0.5	0.5	0.5	0.25	0.25	2
	Modern school New with							
5	GYM and Play ground	1			1	0.5	0.5	2
6	Water shed program	1		0.25	0.25	0.25	0.25	1
	Water body strengthening							
	/Drinking water bore well							
7	drilling			0.25	0.25	0.25	0.25	1
8	Drainage		0.25	0.25	0.25	0.25		1
	Government school							
9	improvement	1		0.25	0.25	0.25	0.25	1
10	Total		1.5	3	4	2.5	2	13

- 84
- 25.0 Based on the reply submitted the proposal was placed on 18th meeting of Expert Appraisal Committee (Industry-I) held during 3rd 5th May 2017. After detailed deliberations, the committee recommended the project for Environmental Clearance with following stipulated Specific Conditions along with other environmental conditions while considering for accord of environmental clearance by the ministry.
- 26.0 The Ministry of Environment, Forest and Climate Change has considered the application based on the recommendations of the Expert Appraisal Committee (Industry-I) and hereby decided to grant environmental clearance for the proposed expansion of Integrated Steel Plant (1.0 MTPA to 1.3 MTPA) of M/s JSW Steel Ltd., located at Mecheri, Taluk Mettur, District Salem, Tamil Nadu under the provision of EIA Notification dated 14th September, 2006, as amended, subject to strict compliance of the following Specific and General conditions:

A. SPECIFIC CONDITION:

- i. The occupational health survey of the active workmen involved shall be carried as per the ILO guidelines and all the employees shall cover in every 5 years @ 20% every year.
- ii. The amount allocated for ESC i.e. Rs. 13 Crores shall be provided as CAPEX and the ESC shall be treated as project and monitored annually and the report of same shall be submitted to Regional office of MoEF&CC.
- iii. The project proponent shall provide for solar light system for all common areas, street lights, villages, parking around project area and maintain the same regularly.
- iv. The project proponent shall provide for LED lights in their offices and residential areas.

- v. The project proponent should install 24x7 air monitoring devices to monitor air emission and submit report to Ministry and its Regional Office.
- vi. The ETP for Blast furnace effluent should be designed to meet Cyanide standards as notified by the MoEFCC.
- vii. No effluent shall be discharged outside the plant premises and 'zero' discharge shall be adopted.
- viii. The ETP for coke oven by-product should be designed to meet EPA notified standards especially the cyanide and phenol.
- ix. Coke oven plant should meet visible emission standards notified by the MoEFCC.
- x. The Standards issued by the Ministry vide G.S.R. 277(E) dated 31st March 2012 shall be strictly adhered to and the Standards prescribed for the Coke Oven plant shall be monitored and the report should be submitted along with the six-monthly compliance report
- xi. The emission standards specified in the Environmental (Protection) Amendment Rules, 2015 issued by vide S.O. 3305 (E) dated 7th December 2015 for the Thermal Power Plant shall be strictly adhered to.
- xii. The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November 2009 shall be followed.
- On-line ambient air quality monitoring and continuous stack monitoring facilities for all the stacks shall be provided and sufficient air pollution control devices viz. Electrostatic precipitator (ESP), and bag filters etc. shall be provided.
- xiv. A statement on carbon budgeting including the quantum of equivalent CO₂ being emitted by the existing plant operations, the amount of carbon sequestered annually by the existing green belt and the proposed green belt and the quantum of equivalent CO₂ that will be emitted due to the proposed expansion shall be prepared by the project proponent and submitted to the Ministry and the Regional Office of the Ministry. This shall be prepared every year by the project proponent. The first such budget shall be prepared within a period of 6 months and subsequently it should be prepared every year.
- xv. For the employees working in high temperature zones falling in the plant operation areas, the total shift duration would be 4 hrs or less per day where the temperature is more than 50°C. Moreover, the jobs of these employees will be alternated in such a way that no employee is subjected to working in high temperature area for more than 1 hr continuously. Such employees would be invariably provided with proper protective equipment, garments and gears such as head gear, clothing, gloves, eye protection etc. There should also be an arrangement for sufficient drinking water at site to prevent dehydration etc.
- xvi. In-plant control measures and dust suppression system shall be provided to control fugitive emissions from all the vulnerable sources. Dust extraction and suppression system shall be provided at all the transfer points, coal handling plant and coke sorting plant of coke oven plant. Bag filters shall be provided to hoods and dust collectors to coal and coke handling to control dust emissions. Water sprinkling system shall be provided to control secondary fugitive dust emissions generated during screening, loading, unloading, handling and storage of raw materials etc.

- xvii. Gaseous emission levels including secondary fugitive emissions from all the sources shall be controlled within the latest permissible limits issued by the Ministry vide G.S.R. 414(E) dated 30th May, 2008 and regularly monitored. Guidelines / Code of Practice issued by the CPCB shall be followed.
- xviii. Hot gases from DRI Kiln should be passed through dust settling chamber (DSC) to remove coarse solids and After Burning Chamber (ABC) to burn CO completely and used in Waste Heat Recovery Boiler (WHRB). The gas then shall be cleaned in ESP before dispersion out into the atmosphere through ID fan and stack. ESP shall be installed to control the particulate emission from WHRB.
- xix. Efforts shall further be made to use maximum water from the rain water harvesting sources. If needed, capacity of the reservoir shall be enhanced to meet the maximum water requirement.
- xx. Risk and Disaster Management Plan along with the mitigation measures shall be prepared and a copy submitted to the Ministry's Regional Office, SPCB and CPCB within 3 months of issue of environment clearance letter.
- xxi. All the blast furnace (BF) slag shall be granulated and provided to cement manufacturers for further utilization. Flue dust from sinter plant and SMS and sludge from BF shall be re-used in sinter plant. Coke breeze from coke oven plant shall be used in sinter and pellet plant. SMS Slag shall be given for metal recovery and properly utilized. All the other solid waste including broken refractory mass shall be properly disposed off in environment-friendly manner.
- xxii. Coal and coke fines shall be recycled and reused in the process. The breeze coke and dust from the air pollution control system shall be reused in sinter plant. The waste oil shall be properly disposed of as per the Hazardous and Other Waste (Management and Transboundary Movement) Rules, 2016.
- xxiii. Green belt shall be developed in 33 % of plant area. Selection of plant species shall be as per the CPCB guidelines in consultation with the DFO.
 - xxiv. All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Steel Plants and Coke Oven Plants shall be implemented.
 - xxv. At least 2.5% of the total cost of the project shall be earmarked towards the Enterprise Social Commitment based on Public Hearing issues, locals need and item-wise details along with time bound action plan shall be prepared and submitted to the Ministry's Regional Office. Implementation of such program shall be ensured by constituting a Committee comprising of the proponent, representatives of village Panchayat and District Administration. Action taken report in this regard shall be submitted to the Ministry's Regional Office.
 - xxvi. The proponent shall prepare a detailed CSR Plan for every year for the next 5 years for the existing-cum-expansion project, which includes village-wise, sector-wise (Health, Education, Sanitation, Health, Skill Development and infrastructure requirements such as strengthening of village roads, avenue plantation, etc) activities in consultation with the local communities and administration. The CSR Plan will include the amount of 2% retain annual profits as provided for in Clause 135 of the Companies Act, 2013 which provides for 2% of the average net profits of previous 3 years towards CSR activities for life of the project. A separate budget head shall be created and the annual capital and

Page 8 of 11

revenue expenditure on various activities of the Plan shall be submitted as part of the Compliance Report to RO. The details of the CSR Plan shall also be uploaded on the company website and shall also be provided in the Annual Report of the company. The plan so prepared shall be based on SMART (Specific, Measurable, Achievable, Relevant and Time bound) concept. The expenditure should be aimed at sustainable development and direct free distribution and temporary relief should not be included.

- xxvii. All the commitments made to the public during the Public Hearing / Public Consultation meeting shall be satisfactorily implemented and a separate budget for implementing the same shall be allocated and information submitted to the Ministry's Regional Office at Bhubaneswar.
- xxviii. Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.

B. GENERAL CONDITIONS:

- i. The project authorities must strictly adhere to the stipulations made by the concerned State Pollution Control Board and the State Government.
- ii. No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEF&CC).
- iii. At least four ambient air quality monitoring stations should be established in the downward direction as well as where maximum ground level concentration of PM₁₀, PM_{2.5}, SO₂ and NO_X are anticipated in consultation with the SPCB. Data on ambient air quality and stack emission shall be regularly submitted to this Ministry including its Regional Office at Chennai and the SPCB/CPCB once in six months.
- iv. Industrial wastewater shall be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December 1993 or as amended from time to time. The treated wastewater shall be utilized for plantation purpose.
- v. The overall noise levels in and around the plant area shall be kept well within the standards (85 dB(A)) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz. 75 dB(A) during day time and 70 dB(A) during night time.
- vi. Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.
- vii. The company shall develop rain water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.
- viii. The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA/EMP report. Further, the company must undertake socio-economic development activities in the surrounding villages like community development programmes, educational programmes, drinking water supply and health care etc.
- ix. Requisite funds shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the

Ministry of Environment, Forest and Climate Change (MoEF&CC) as well as the State Government. An implementation schedule for implementing all the conditions stipulated herein shall be submitted to the Regional Office of the Ministry at Chennai. The funds so provided shall not be diverted for any other purpose.

- x. A copy of clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parishad / Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the web site of the company by the proponent.
- xi. The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of the MoEF&CC at Chennai. The respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; PM₁₀, SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
- xii. The project proponent shall also submit six monthly reports on the status of the compliance of the stipulated environmental conditions including results of monitored data (both in hard copies as well as by e-mail) to the Regional Office of MoEF&CC, the respective Zonal Office of CPCB and the SPCB. The Regional Office of this Ministry at Chennai/ CPCB / SPCB shall monitor the stipulated conditions.
- xiii. The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Office of the MoEF&CC at Chennai by e-mail.
- 81
- xiv. The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry of Environment, Forests and Climate Change (MoEF&CC) at http://envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional office at Bhubaneshwar.
- xv. Project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.
- 27.0 The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.
- 28.0 The Ministry reserves the right to stipulate additional conditions if found necessary. The Company in a time bound manner shall implement these conditions.
- 29.0 The PP shall abide by all the commitments and recommendations made in the EIA/EMP report and also that during their presentation to the EAC. The commitment made by the project proponent to the issue raised during Public Hearing shall be implemented by the proponent.

- 30.0 The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and rules.
- 31.0 This EC supersedes the earlier EC granted vide letter Lr. No. J-11011/281/2006-IA.II(I) dated 02.01.2007 for the 1.0 MTPA capacity.
- 32.0 Any appeal against this EC shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

This issues with the approval of Competent Authority.

(Sharath Kumar Pallerla) Scientist 'F'/Director

Copy to:-

- 1). The Secretary, Department of Environment, Government of Tamil Nadu, Chennai.
- 2). The Secretary, Department of Forests, Government of Tamilnadu, Chennai
- 3). **The Additional Principal Chief Conservator of Forests**, Ministry of Environment, Forest and Climate Change, Regional Office (SEZ), 1st and 2nd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai 34
- 4). **The Chairman**, Central Pollution Control Board, Parivesh Bhawan, CBD-cum-Office Complex, East Arjun Nagar, Delhi-110032.
- 5). **The Chairman**, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai- 600 032, Tamil Nadu.
- 6). **The Member Secretary**, Central Ground Water Authority, A2, W- 3 Curzon Road Barracks, K.G. Marg, New Delhi-110001.
- 7). The District Collector, Salem District, State of Tamil Nadu.
- 8). Guard File / Record file / Monitoring file.
- 9). MOEF&CC Website.

(Sharath Kumar Pallerla) Scientist 'F'/Director

ANNEXURE 18 NIPL APPROVAL OBTAINED FOR STEEL BALL UNDER PRODUCT MIX

TAMIL NADU POLLUTION CONTROL BOARD

From Thiru R.Kannan, M.Tech., Member Secretary, Tamil Nadu Pollution Control Board 76, Mount Salai, Guindy Chennai - 600 032.

To The Executive Vice President, M/s. JSW Steel Limited, Salem Works Pottaneri P.O, Mecheri, Mettur Taluk, Salem District

Lr No. TNPCB/T2/F.0016/SLM/2022 Dated: 28.11.2022

Sir.

TNPCB- Industries - M/s. JSW Steel Limited, Salem Works, M.Kalipatti Village Sub: and Potanneri Village, Mettur Taluk, Salem District - application for "No Increase in Pollution Load Certificate" - decision of Pollution Load Assessment Committee meeting held on 14.11.2022 - communicated - Reg .

Ref:

- 1. Environmental Clearance issued by MoEF F.No.J-11011/281/2006-IA-II(I) dated: 10.02.2020.
- 2. Your application submitted for requesting "No increase in Pollution Load Certificate Dt. 09.08.2022
- 3. Minutes of PLAC meeting held on 14.11.2022

Your kind attention is invited to the reference 2nd cited, wherein M/s. JSW Steel Limited, Salem Works, M.Kalipatti Village and Potanneri Village, Mettur Taluk, Salem District has applied for "No Increase in Pollution Load Certificate" for its proposal to produce one more value addition product namely "Steel ball - 0.20 MTPA" within the total steel production capacity of 1.15 MTPA by installing EMF based induction heaters and ball cutting machines.

P	rod	uct:
 	-	-

Products:	As Per EC/ latest	Details	Proposed
Details	CTO dt: 27.5.2022		
Products: Steel production (Mild Steel, Carbon Steel, Alloy Steel and Special Steel) Products (Billets & Blooms, Round bars, Round Corner Square, Flats, Coils, Bars & Rods, Hexagon, Annealed, Pickled and peeled & ground products)	1.15 MTPA	Steel production (Mild Steel, Carbon Steel, Alloy Steel and Special Steel) Products (Billets & Blooms, Round bars, Round Corner Square, Flats, Coils, Bars & Rods, Hexagon, Annealed, Pickled and peeled & ground products and steel ball)	МТРА
CPP (Steel Plant) 7 MW	Withdrawn	CPP (Steel Plant)	Withdraw

By products:			
Ferrous Sulfate	1200 MT/Year	Ferrous Sulfate	1200 MT/Year
Liquid oxygen for sale	15000 MT/Year	Liquid oxygen for sale	15000 MT/Year
Liquid Nitrogen for sale	2000 MT/Year	Liquid Nitrogen for sale	2000 MT/Year
Liquid Argon for sale	8000 MT/Year	Liquid Argon for sale	8000 MT/Year
Paver block by using Steel Making Shop slag	50000MT/ Year	Paver block by using Steel Making Shop slag	50000
Crushed slag (steel Making Shop Slag)	226750 MT/Year	Crushed slag (steel Making Shop Slag)	MT/Year 226750
Ready -Mix concrete	82500 MT/Year	Ready -Mix concrete	MT/Year 82500
Ground Granulated Blast Furnace Slag	800000 MT/Year	Ground Granulated Blast Furnace Slag	MT/Year 800000
Intermediate Products		. arriado orag	MT/Year
Pig Iron	300000 MT/Year	Pig Iron	300000 MT/Year

II. <u>SEWAGE:</u>

Plant STP		Exist (Quantity			2 mile	Remarks			
	Pollution Load before Treatment		Polluti Load Treatn	after	Pollution before Treatm		Pollution Load after Treatment		There is no
	Mg/lit	Kg/day	Mg/lit	Kg/ day	Mg/lit	Kg/day	Mg/lit	Kg/ day	additional manpower to the
BOD	300	14.80	2.34	0.12	300	14.80	2.05	0.12	facility proposed
TSS	350	17.26	8.80	0.43	350	17.26	9.09	0.43	proposed

Town	Existi (Qua	ng ntity in K		Propo (Quar	sed ntity in	Remarks				
ship STP	Pollution Load before Treatment		Pollut Load Treati	after	Pollution Load by Treatm	efore	Pollution Load after Treatment		en Primitive en la regio	
	Mg /lit	Kg/ day	Mg/ lit	Kg/ day	Mg/lit	Kg/ day	Mg/ lit	Kg/ day	There is no changes in Township STP	
BOD	300	8.37	2.05	0.06	300	8.37	2.05	0.06		
TSS	350	9.76	9.09	0.25	350	9.76	9.09	0.25		

TAMIL NADU POLLUTION CONTROL BOARD

III. TRADE EFFLUENT:

There is no change in the effluent quantity and quality after the ball mill facility establishment

	Existing (G	uard Por	nd)	Proposed (Guard Pond)				
Details	Pollution conc.	Pollution conc After treatment		Pollution concentrat ion before	Pollution concentration After treatment			
	treatment (mg/l)	mg/l	gm/ ToP	treatment (mg/l)	mg/l	gm/ ToP		
BOD	12	5.8	0.0054	12	5.8	0.0054		
COD	66	28.9	0.0269	66	28.9	0.0268		
TSS	45	17	0.0158	45	16.90	0.0157		
TDS	1200	1167	1.087	1200	1166	1.087		

IV. AIR POLLUTION:

Pollution Load after treatment from all process stacks & non process stacks

There will not be air emission from the proposed ball mill facility

SOL LIN	E	xisting (Kg/Ton of	Product)	Proposed (Kg/Ton of Product)			
S.No	PM	SO ₂	NOx	Other key parameters	PM	SO ₂	NOx	Other key parameters
1	1.79	1.53	1.29	a ye kerhe ak	1.79	1.53	1.29	

S.No		Existi	ng (Kg/	day)	Proposed (Kg/day)			
	PM	SO ₂	NO x	Other key parameters	PM	SO ₂	NOx	Other key parameters
1	2644	3226	2644	-	2644	3226	2644	

V. HAZARDOUS WASTE GENERATION:

	Quantity of Hazardous wa	ste generation	on	
Sl.no	Waste Description	Existing Proposed (T/Annum)		Remarks
1	Haz.WasteCat:3.3 -Sludge and filte contaminated with oil	1.5	1.5	N A SUNT
2	Haz. Waste Cat: 5.1 - Used/ Spent oil	70	70	
3	Haz. Waste Cat: 33.1-Discarded containers /barrels/liners/contaminated with Haz. Waste/Chemicals(Kgs)	30	30	
4	Haz. Waste Cat: 5.2 - Wastes/residues containing oil/wastes/Grease (Grease)	25	25	The proposed ball mill facility is dry process and Hazards
5	Haz. Waste Cat: 5.2 - Wastes/residues containing oil/wastes/Grease (OSCW)	40	40	waste generation is not envisaged
3	Phosphate sludge (12.5)	100	100	
7	Haz. Waste Cat: 35.3 Chemical Sludge from waste water treatment	700	700	100
3	Haz. Waste Cat: 35.3 Chemical Sludge from waste water treatment		600	
	Total Quantity (T/Annum)	1567	1567	
10	Total Quantity (T/day)	4.48	4.48	and the second

This subject was discussed in detail in the PLAC meeting held on 14.11.2022 and the committee decided to certify that there is no increase in pollution load due to one more value addition product namely "Steel ball – 0.20 MTPA" within the total steel production capacity of 1.15 MTPA by installing EMF based induction heaters and ball cutting machines by the unit. Hence the committee has recommended that request of the unit to grant Consent without Environmental Clearance can be considered by TNPCB subject to the following conditions.

1) The unit shall comply with all the conditions imposed in the Environmental Clearance issued by MOEF vide F.No. J-11011/281/2006-IA.II(I) dt: 10.02.2020.

TAMIL NADU POLLUTION CONTROL BOARD

- 2) The unit shall comply with all existing norms of discharge and emission as well as changes if any made by Authorities like MoEF& CC, CPCB and TNPCB from time to time.
- 3) The unit shall comply with all the conditions imposed by the TNPCB in the consent order when granted.
- 4) The TNPCB shall monitor the unit periodically to confirm the real time pollution load after operation.
- 5) The unit shall not go for any expansion or installation of new machineries without prior consent of the Board.
- 6) The unit shall under take to work out the pollution loads after commencing the operation of product mix change and submit report to TNPCB.
- 7) Sewage to be monitored for quantity and quality on monthly basis and the reports to be submitted to TNPCB.
- 8) Ambient Air Quality and stack emission to be monitored by external agency once in a month and the reports to be submitted to TNPCB on regular basis.
- 9) Hazardous wastes to be segregated and stored in designated areas and properly disposed for recycling/TNWML for disposal.
- 10) The unit shall furnish Environmental Management Plan and 3rd party Audit.
- 11) The unit shall provide online monitors for effluent, ambient and emission parameters and shall make proper connectivity with WQW and CAC of TNPCB for continuous monitoring of water and Air Quality.
- 12) The unit shall comply with the consent order conditions, various directions issued by TNPCB/CPCB/NGT etc., from time to time.
- 13) As per EIA notification, if on verification the TNPCB holds that the change or expansion or modernization will result or has resulted in increase in pollution load, the exemption claimed under this clause shall not be valid and it shall be deemed that the project proponent was liable to obtain prior Environmental clearance before undertaking such changes or increase, as per the clause (a) of sub para (ii) of para 7 of EIA notification and the provisions of Environment (Protection) Act, 1986 shall apply accordingly.

Email: tnpcb-chn@gov in Web: tnpcb-gov in

- 14) It shall be the responsibility of the project proponent to satisfy itself about "no increase in pollution load as a result of changes, expansion or modernization, as the case may be, before under taking such changes or increase, and the project proponent shall be liable for action under the provisions of the Environment (Protection) Act, 1986 if on verification of facts or claim it is found that such change or expansion or modernization involves increase in pollution load.
- 15) This certificate of "No increase in Pollution Load" has to be uploaded in the Parivesh portal and the necessary acknowledgement shall be produced to TNPCB while applying for CTE /CTO.

Receipt of this letter shall be acknowledged

For Member Secretary

Copy to:

- The Joint Chief Environmental Engineer (M), Tamil Nadu Pollution Control Board, Salem
- The District Environmental Engineer, Tamil Nadu Pollution Control Board, Salem.